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1 Executive Summary

The National Energy Research Scientific Computing Center (NERSC) is the primary
computing center for the DOE Office of Science, serving approximately 5,000 users working
on some 700 projects that involve nearly 600 codes in a wide variety of scientific
disciplines. In addition to large-scale computing and storage resources NERSC provides
support and expertise that help scientists make efficient use of its systems.

In October 2013 NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR)
and DOE’s Office of Basic Energy Sciences (BES) held a review to characterize High
Performance Computing (HPC) and storage requirements for BES research through 2017.
This review is the tenth in a series that began in 2009 and it is the second for BES. The
report from the previous BES review is available at http://www.nersc.gov/science/hpc-
requirements-reviews/target-2014/.

The latest review revealed several key requirements, in addition to achieving its goal of
characterizing BES computing and storage needs. High-level findings are:

1. Scientists will need access to significantly more computational and storage
resources to achieve their goals and reach BES research objectives.

2. Users will need assistance from NERSC to prepare for Cori (NERSC-8) and follow-on

manycore systems.

Research teams need to run complex jobs of many different types and scales.

4. BESisaleader in innovative use of HPC and requires a diverse set of resources and
services from NERSC.

5. BES facilities need computational analysis and data storage resources beyond what
they can provide.

w

This report expands upon these key points and adds others. The results are based upon
representative samples, called “case studies,” of the needs of science teams within BES. The
case study topics were selected by the NERSC meeting coordinators and BES program
managers to represent the BES production computing workload. Prepared by BES
workshop participants, the case studies contain a summary of science goals, methods of
solution, current and future computing requirements, and special software and support
needs. Also included are strategies for computing in the highly parallel “many-core”
environment that is expected to dominate HPC architectures over the next few years.
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2 DOE Basic Energy Sciences Mission

Basic Energy Sciences (BES) supports fundamental research to understand, predict, and
ultimately control matter and energy at the electronic, atomic, and molecular levels in order
to provide the foundations for new energy technologies and to support DOE missions in
energy, environment, and national security. The BES program also plans, constructs, and
operates major scientific user facilities to serve researchers from universities, national
laboratories, and private institutions. The BES program funds work at more than 160
research institutions through the following three Divisions:

* Materials Sciences and Engineering Division
e Chemical Sciences, Geosciences, and Biosciences Division
e Scientific User Facilities Division

The Materials Sciences and Engineering (MSE) Division supports fundamental experimental
and theoretical research to provide the knowledge base for the discovery and design of new
materials with novel structures, functions, and properties. This knowledge serves as a basis
for the development of new materials for the generation, storage, and use of energy and for
mitigation of the environmental impacts of energy use.

The Chemical Sciences, Geosciences, and Biosciences (CSGB) Division supports
experimental, theoretical, and computational research to provide fundamental
understanding of chemical transformations and energy flow in systems relevant to DOE
missions. This knowledge serves as a basis for the development of new processes for the
generation, storage, and use of energy and for mitigation of the environmental impacts of
energy use.

The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and
operation of scientific user facilities for the development of novel nano-materials and for
materials characterization through x-ray, neutron, and electron beam scattering; the former
is accomplished through five Nanoscale Science Research Centers and the latter is
accomplished through the world's largest suite of synchrotron radiation light source
facilities, neutron scattering facilities, and electron-beam microcharacterization centers.
These facilities provide unique capabilities to the scientific community and are a critical
component of maintaining U.S. leadership in the physical sciences. Annually, more than
15,000 scientists and engineers in many fields of science and technology visit the BES user
facilities.

The energy systems of the future - whether they tap sunlight, store electricity, or make fuel
from splitting water or reducing carbon dioxide - will revolve around materials and
chemical changes that convert energy from one form to another. Such materials will need to
be more functional than today’s energy materials. To control chemical reactions or to
convert a solar photon to an electron requires coordination of multiple steps, each carried
out by customized materials with designed nanoscale structures. Such advanced materials
are not found in nature; they must be designed and fabricated to exacting standards using
principles revealed by basic science.

Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 6



This report highlights the growing need for state-of-the-art computational resources
through such activities as the interagency Materials Genome Initiative, advanced simulation
capabilities in Geoscience, and enhanced analysis and real-time simulation of data from the
BES suite of user facilities.

T U.S. Department of Energy Strategic Plan, May 2011
(http://energy.gov/sites/prod/files/2011_DOE_Strategic_Plan_.pdf)
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3 About NERSC

The National Energy Research Scientific Computing (NERSC) Center, which is supported by
the U.S. Department of Energy’s Office of Advanced Scientific Computing Research (ASCR),
serves more than 5,000 scientists working on over 700 projects of national importance.
Operated by Lawrence Berkeley National Laboratory (LBNL), NERSC is the primary high-
performance computing facility for scientists in all of the research programs supported by
the Department of Energy’s Office of Science. These scientists, working remotely from DOE
national laboratories; universities; other federal agencies; and industry, use NERSC
resources and services to further the research mission of the Office of Science (SC). While
focused on DOE's missions and scientific goals, research conducted at NERSC spans a range
of scientific disciplines, including physics, materials science, energy research, climate
change, and the life sciences. This large and diverse user community runs hundreds of
different application codes. Results obtained using NERSC facilities are citied in about 1,500
peer reviewed scientific papers per year. NERSC activities and scientific results are also
described in the center’s annual reports, newsletter articles, technical reports, and
extensive online documentation. In addition to providing computational support for
projects funded by the Office of Science program offices (ASCR, BER, BES, FES, HEP and NP),
NERSC directly supports the Scientific Discovery through Advanced Computing (SciDAC?)
and ASCR Leadership Computing Challenge? Programs, as well as several international
collaborations in which DOE is engaged. In short, NERSC supports the computational needs
of the entire spectrum of DOE open science research.

The DOE Office of Science supports three major High Performance Computing Centers:
NERSC and the Leadership Computing Facilities at Oak Ridge and Argonne National
Laboratories. NERSC has the unique role of being solely responsible for providing HPC
resources to all open scientific research areas sponsored by the Office of Science.

This report illustrates NERSC alignment with, and responsiveness to, DOE program office
needs; in this case, the needs of the Office of Basic Energy Sciences. The large number of
projects supported by NERSC, the diversity of application codes, and its role as an incubator
for scalable application codes present unique challenges to the center. However, as
demonstrated its users’ scientific productivity, the combination of effectively managed
resources, and excellent user support services the NERSC Center continues its 40-year
history as a world leader in advancing computational science across a wide range of
disciplines.

NERSC provides an important computational resource for BES scientists. During the 2013
allocation year, there were 290 BES projects at NERSC, which is the largest number of
projects of the six Office of Science program offices. These BES projects, which consumed
about 40% of the total 2013 DOE-allocated time at NERSC, supported principal
investigators and approximately 1,000 graduate and postdoctoral students addressing
fundamental issues in predictive materials and chemical sciences, actinide chemistry,
energy storage, carbon capture, catalysis, combustion, geosciences, magnetism, polymer

Lhttp://www.scidac.gov

2 http://science.energy.gov/~/media/ascr/pdf/incite/docs/Allocation_process.pdf
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science, solar energy, and superconductivity. In addition to core research programs, NERSC
resources support BES scientific user facilities, the BES accelerator and detector research
program, the BES SciDAC programs, the Energy Frontier Research Centers and the Fuels
from Sunlight Energy Innovation Hub.

For more information about NERSC visit the web site at http://www.nersc.gov.
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4 Meeting Background and Structure

In support of its mission to provide world-class HPC systems and services for DOE Office of
Science research NERSC regularly gathers user requirements. In addition to the
requirements reviews, NERSC collects information through the Energy Research Computing
Allocations Process (ERCAP); workload analyses; an annual user survey, and discussions
with DOE program managers and scientists who use the facility.

In October 2013, ASCR (which manages NERSC), BES, and NERSC held a review to gather
HPC requirements for current and future science programs funded by BES. This report is
the result.

This document presents a number of findings, based upon a representative sample of
projects conducting research supported by BES. The case studies were chosen by the DOE
Program Office Managers and NERSC staff to provide broad coverage in both established
and incipient BES research areas. Most of the domain scientists at the review were
associated with an existing NERSC project, or “repository” (abbreviated later in this
document as “repo”).

Each case study contains a description of scientific goals for today and for the future, a brief
description of computational methods used, and a description of current and expected
future computing needs. Since supercomputer architectures are trending toward systems
with chip multiprocessors containing hundreds or thousands of cores per socket and
perhaps millions of cores per system, participants were asked to describe their strategy for
computing in such a highly parallel, “manycore” environment.

Requirements presented in this document will serve as input to the NERSC planning
process for systems and services, and will help ensure that NERSC continues to provide
world-class resources for scientific discovery to scientists and their collaborators in support
of the DOE Office of Science, Office of Basic Energy Sciences.

NERSC and ASCR have been conducting requirements workshops for each of the six DOE
Office of Sciences offices that allocate time at NERSC (ASCR, BER, BES, FES, HEP, and NP). A
first round of meetings was conducted between May 2009 and May 2011 for requirements

with a target of 2014. This second round of reviews target needs for 2017.

Findings from the review follow.
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5 Workshop Demographics

5.1 Participants

5.1.1 DOE / NERSC Participants and Organizers

Name Institution Area of Interest/Title
James Davenport DOE / BES .Program Mana.ger, Mater.la.ls.
Sciences and Engineering Division
NERSC User Services Group;
Jack Deslippe NERSC materials science application
support
Sudip Dosanjh NERSC NERSC Director
Richard Gerber NERSC Meeting Organlzer, N.ERSC Senior
Science Advisor
Dave Goodwin DOE / ASCR NERSC Program Manager
. Program Manager, Accelerator and
Eliane Lessner DOE / BES Detector R&D
George Maracas DOE / BES Program Manager, Nanocenters
Program Manager, Scientific User
VanT. Nguyen DOE / BES Facilities (SUF) Division
Mark R. Pederson DOE / BES Program Manag.er, Compu.tatlonal
and Theoretical Chemistry
NERSC Strategic Partnership Lead;
David Skinner NERSC high-throughput materials science
applications
Harvey Wasserman NERSC Meeting Organizer
Nicholas Woodward DOE / BES Program Manager, Geosciences
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5.1.2 Domain Scientists

S NERSC
Name Institution Area of Interest
Repo(s)
Michael Banda Lawrence Berkeley National Advanced Light Source als
Laboratory
. Sandia National .
Jacqueline Chen Laboratories, California Combustion mp241
Argonne National Molecular dynamics in m1524,
Sanket Deshmulkh Laboratory chemistry m1528
Andrew R. Felmy Pacific Northwest National Geochemistry mp119
Laboratory
Scott French University of California, Geophysics m554
Berkeley
Andreas Heyden University of South Carolina Rational catalyst design m1065
Paul Kent Oak Ridge National Materials science m>26,
Laboratory m641
Yun Liu Massachusetts Institute of Materials science me655,
Technology m1797
Thomas Miller California Institute of Chemical science m822
Technology
mp149,
. m716,
Jeffrey Neaton Lawrence Berkeley National Materials science m1793,
Laboratory
mp1l73,
m387
Lawrence Berkeley National .
Gregory Newman Laboratory Geophysics m372
. matgen,
David Skinner NERSC High t.hroug.hput matcomp,
materials science
m1290
Carl Steefel Lawrence Berkeley National Porous media transport
Laboratory
o . m1513,
Sotiris Xantheas Pacific Northwest National Chemical physics mp329,
Laboratory mAS?
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5.2 NERSC Projects Represented by Case Studies

NERSC projects represented by case studies are listed in the table below, along with the
number of NERSC hours they used in 2013. The BES allocation at NERSC is the largest of the
six offices that allocate time at NERSC, with approximately 300 projects (about 40% of the
NERSC total) and over 800M hours (also about 40%). BES and ASCR program managers,
along with NERSC staff, chose participants to best represent the BES workload at NERSC.
The projects listed below include one repository ("matcomp”) that NERSC considers a
"sponsored” project. One of two such projects at NERSC (the other is sponsored by HEP),
matcomp compute hours at NERSC are allocated by BES program managers but are not part
of the annual NERSC ASCR allocation target.
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NERSC Jls ?el(lir:t Archival Shared
Project NERSC Project Title Prmcllpal Workshop NERSC Data at Dat.a on
ID Investigator Speaker in 2013 NERSC Disk
(Repo) 2013 (TB) (TB)
M)
Geoscience
m372 Large SFale 3D Geophysical Inversion Gregory Gregory 29 0172 0.02
& Imaging Newman Newman
mp119 Computa?lonal Studies in Molecular Andrew Andrew 29 0.449 0
Geochemistry Felmy Felmy
m554 Globql-scalefull-l{vaveform seismic Barbara. Scott 30 0.081 01
imaging of Earth’s mantle Romanowicz French
Chombo-Crunch: Advanced Simulation
m1792* of Subsurface Flow and Regctzve . Davu.i Carl Steefel 63 274 2
Transport Processes Associated with Trebotich
Carbon Sequestration*
Advanced Simulation of Pore Scale
Reactive Transport Processes David
*
m1516 Associated with Carbon Trebotich Carl Steefel 33 249 0
Sequestration*
Materials Science
Computational Resources for the
Nanomaterials Theory Institute at the
m526 Center for Nanophase Materials Paul Kent Paul Kent 19.4 15.4 4.1
Sciences
MAtgen, | pe Materials Project Kristin David 18.8 46.1 51
matcomp Persson Skinner
Excited-State and Charge Transport Jeffrey Jeffrey
m1793 Phenomena in Novel Energy Materials Neaton Neaton 18.7 45.0 0
m1797 Compu.tatlonal Design of Novel Energy Jeffrey vun Liu 15.4 7 7
m655 Materials Grossman
Scientific User Facilities
. Michael Michael
ALS Advanced Light Source Banda Banda 4.3 536 75
Advanced Modeling for Next- Robert
m669 Generation BES Accelerator Robert Ryne Ryne 52 38.7 0.25
Chemical Sciences
Direct Numerical Simulations of Clean Jacqueline Jacqueline
mp241 | and Efficient Combustion with q q 73.4 828 8.5
. Chen Chen
Alternative Fuels
m1065 Ratlonal. Catalyst Design for Energy Andreas Andreas 45 0 0
Production Heyden Heyden
m452 | Condensed Phase Studies with cpzk | Christopher]. | Sotiris 6.4 27.4 2.7
Mundy Xantheas
Accurate Scalable Calculations for the Sotiris Sotiris
m1513 Ground and Excited States of Complex 5 0.622 0
. Xantheas Xantheas
Molecular Assemblies
Derrick
m1524 Molecular dynamics simulation of Mancini Sanket 12.9 0 0
m1528 PNIPAM-coated gold nanoparticles; Sanket Deshmukh ’
Deshmukh
Sampling diffusive dynamics on long
m822 timescales, and simulating the coupled Thgmas Thc.Jmas 21.4 33.0 0.002
. ; Miller Miller
dynamics of electrons and nuclei
Total Represented by All Case Studies** 343M | 2,320TB | 150 TB
All BES usage at NERSC in 2013 (280 projects)** 820M | 2,362TB | 188 TB
Percent of BES 2013 Allocation Represented by Case Studies** 37.5% 98% 80%
Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 14



* These projects were allocated under ASCR, but are included here for purposes of evaluating future needs. The
science research falls under BES and will need to be accommodated in BES in the future.
** Includes m1516 and m1792
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6 Findings

6.1 Requirements Summary

The following is a summary of requirements derived from the case studies. Note that many
requirements are stated individually but are in fact closely related to and dependent upon
others.

6.1.1 Scientists will need access to significantly more computational
and storage resources to achieve their goals and reach BES
research objectives

* Researchers attending the review anticipate that BES scientists will need
15.8 billion Hopper-equivalent hours of computing time in 2017. This is 17
times what BES used in 2013 and 31 times what BES used in 2012.

* BES scientists will need more than 3 PB of shared real-time-access file
storage space and 36 PB of archival data storage at NERSC. Both of these
values are approximately 16 times what BES used in 2013.

* System stability, reliability, availability, and usability are important features
scientists need to make use of their allocations.

* BES facilities (e.g., light sources) are expected to produce a large amount of
data that will require storage and computational resources for analysis
beyond the requirements given above.

6.1.2 Users will need assistance from NERSC to prepare for Cori (NERSC-
8) and follow-on manycore systems

* Scientists need guidance, advice, and training from NERSC to transition
codes for efficient computation on manycore systems like Cori.

* BES researchers depend substantially on third-party ISV and community
software (full applications and several key libraries and partial differential
equation (PDE) solvers) and there is an expectation that this software will
be available and run well on future systems.

* Connections with computer science experts are needed to develop new
algorithms.

6.1.3 Research teams need to run complex jobs of many different types
and scales.

* Researchers need to run codes at both high and low parallel concurrencies,
with run times from seconds to weeks. Some codes require large-memory
nodes up to 100 GB or more.

Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 16



*  Workflows are becoming more complicated and tools are needed to
accommodate this need. Some teams’ workflows involve multiple resources
across different sites.

* Time to solution is the most important metric for success. This requires
schedulers and policies that can support High Throughput Computing, with
the ability to accommodate episodic computing needs.

6.1.4 BES is a leader in innovative use of HPC and requires a diverse set
of resources and services from NERSC.

* Science teams need to continue delivering data and results of calculations
performed at NERSC to their own communities of users.

e The Materials Project informatics approach to science needs
supercomputing resources, high-throughput computing capabilities, shared
data storage, complex workflows, and web portals.

* Other projects, like those at the Advanced Light Source, have similar
requirements.

* Some projects need on-demand computing to serve their users.

6.1.5 BES facilities need computational analysis and data storage
resources beyond what they can provide.

* Scientific insight and discovery are now limited as much by computational
capacity as by detector or accelerator technology.

* Since users of other facilities are investing considerable time in porting data
and software to NERSC, multi-year NERSC account commitments are
needed.

* Facilities need to overcome the challenge of data management, including
ownership, stewardship, and provenance.

* Advanced data analytics techniques and software are needed to make
scientific discoveries.

6.2 Computing and Storage Requirements

The following two tables list, respectively, the 2017 computational hours and storage
needed at NERSC for research represented by the case studies in this report. “Total Scaled
Requirement” at the end of each table represents the amount (hours or TB) needed by all
2013 BES NERSC projects if 2013 BES usage is increased by the same factor as that needed
by the projects represented by the case studies. The "Factor Increase" listed for the project
for which Steefel is PI was obtained by using the sum of the three ASCR projects listed above
as the reference.
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6.2.1 Computing Requirements
Repo(s) Compute Resources
T Needed in 2017
. rincipa
Case Study Title Investigator T Factor
Hours Increase
vs. 2013
Large Sca.Ie Geophysical Simulation Newman m372 900 31
and Imaging
Computa?lonal Studies in Molecular Felmy mp119 22 10
Geochemistry
Direct Numerical Simulation of m1516
Poisson-Nernst-Planck Equation in Steefel m1792 1,000 10
Charged Clays
Global-Scale Full-Waveform Seismic Romanowic m554 25 8
Imaging of Earth’s Mantle wicz
Computational Resources for the
Nanomaterials Theory Institute at the
Center for Nanophase Materials Kent m526 500 26
Sciences
The Materials Project Persson matgen, matcomp 500 26
Excited-State and Charge Transport m1793
Phenomena in Novel Energy Material Neaton 250 13
Compgtatlonal Design of Novel Energy Grossman m1797 416 27
Materials
Advanced Light Source Banda als 45 10
Advanced Modeling for Next-
Generation BES Accelerators Ryne me69 100 19
Combustion of alternative fuels for
?ransp'ortqtzon sfvstems —fundam.ental Chen mp241 500 6.8
investigation using direct numerical
simulations
Ratlonall Catalyst Design for Energy Tl m1065 20 48
Production
Condensed Phase Studies with CP2K Mundy m452 18 2.8
Accurate Scalable Calculations for the
Ground and Excited States of Complex Xantheas m1513 500 38
Molecular Assemblies
Molecular Dynamics of PNIPAM
Agglomerates and Composite Deshmukh m1528, m1524 500 39
Architectures
Sampling Diffusive Dynamics on Long
Timescales, and Simulating the .
Coupled Dynamics of Electrons and Miller m822 150 7.0
Nuclei
Total from by Case Studies 5,946
Percent of NERSC 2013 BES Allocations Represented
. 37.5%
by Case Studies
All BES at NERSC Total Scaled Requirement for 2017 15,856 17.3
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6.2.2 Storage Requirements

Archival Data

Shared Online
Storage
. Data Storage
Case Study Title PI Needed in Needed in 2017
ase
Factor Factor
TB TB
Increase Increase

Largg Scale Geophysical Simulation and Newman 10 58 1.0 62.5
Imaging (m372)
Computational Studies in Molecular Felmy -
Geochemistry (mp119) 10,000 1,000 i
Direct Numerical Simulation of Poisson- Steefel
Nernst-Planck Equation in Charged (m1516) 10,000 13 100 50
Clays (m1792)
Global-Scale Full-Waveform Seismic Romanowicz 05 6.2 01 2
Imaging of Earth’s Mantle (m554) ' ) )
Resources for the Nanomaterials Kent
Theory Institute at the Center for (m526) 600 39 10 2.4
Nanophase Materials Sciences

Persson
The Materials Project (matgen) 1,000 22 1,000 20

(matcomp)
Excited-State and Charge Transport Neaton 500 11 20 )
Phenomena in Novel Energy Material (m1793)
. . Grossman

Compgtatlonal Design of Novel Energy (m1797) 70 10 70 10
Materials

(m655)
Advanced Light Source Bgl“ga 5,000 9.3 200 2.7
Advanced Modeling for Next-Generation Ryne
BES Accelerators (m669) 300 78 4 16
Combustion of alternative fuels for
?ransp'ortqtzon sfvstems —fundam.ental Chen 8,300 10 100 12
investigation using direct numerical (mp241)
simulations
Rational Catalyst Design for Energy Heyden 0 i 0 )
Production (m1065)
Condensed Phase Studies with CP2K Mundy 70 2.6 5 2

(m452)
Accurate Scalable Calculations for the Xantheas
Ground and Excited States of Complex (m1513) 200 300 1 -
Molecular Assemblies
Molecular Dynamics of PNIPAM DeShml.lk.h/

. Mancini
Agglomerates and Composite (m1528) 20 - 20 -
Architectures (m1524)
Sampling Diffusive Dynamics on Long Miller
Timescales, and Simulating the Coupled (m822) 75 2.3 4 -
Dynamics of Electrons and nuclei
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Total Represented by Case Studies 36,145 2,535
Percent of NERSC 2013 BES Allocations
0, 0,
Represented by Case Studies L 15.6 Bl 16.8
All BES at NERSC Total Scaled Requirement for 36,800 3,159
2017
6.3 Additional Observations

Participants at the meeting noted a number of observations that are not listed in the high-
level findings, the most significant of which are listed here.

Many projects could make good use of long queue run limits - at the very least 24
hours - using moderate MPI parallelism.

Many MD, DFT, and electronic structure codes do not have built-in checkpoint
ability.

Many projects could use large-memory nodes for analysis, especially for Density
Functional Theory (DFT) for excited state calculations (some users do not use all the
cores on a node in order to get access to more memory per core) and correlated
wave functions.

There are ongoing porting efforts for manycore systems now within the BES
community.

There is a portion of the BES workload that has invested in creating software that
uses GPUs and can use GPUs as part of its end-to-end workflow today. Some codes
also have OpenMP but many don't yet have fine-grained parallelism.

Projects like the Materials Project and ALS “touch all of NERSC.”

Users are looking for way to create fault-tolerant applications and workflows; some
mechanism for probing the health of a system and its components would be helpful.
The table below summarizes some characteristics of projects that took part in this
review. In this table, "HTC" is High-Throughput Computing and the "Software"
column omits more "routine" software, such as MPI, OpenMP, LAPACK, HDF5, even
though projects may need it. Visualization products are also not listed here.

Manvcore Software Strong
N Principal HTC y NERSC or Weak
Project Title - Ready .
Investigator | Important? Now? Needs to Scaling
) Provide Needed
MUMPS,
Large Scale Geophysical PETSc,
Simulation and Imaging Newman No Some SuperLU, Strong
Trilinos
Computational Studies in FFT, Global
Molecular Geochemistr, el No Some Arrays, Strong
y ScaLAPACK
Direct Numerical Simulation of
Poisson-Nernst-Planck Equation Steefel No No PETSc Weak
in Charged Clays
Global-Scale Full-Waveform . FFT,
Seismic Imaging of Earth’s Romanowicz No No ScaLAPACK Strong
Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 20



Mantle

Computational Resources for the L/?/I\I/ilg/IPPS,
Nanomaterials Theory Institute Kent Occasional Some ABINIT, QE, Both
at the Center for Nanophase FFT
Materials Sciences ScaLAPACK
VASP,
BerkeleyGW,
The Materials Project Persson Yes! No AT, Both
Zeo++, and
Boltztrap,
MongoDB
Siesta,
Excited-State and Charge Not now, BerkeleyGW,
f : QE, VASP,
Transport Phenomena in Novel Neaton maybe in No Both
. PARATEC,
Energy Material the future FFT
ScaLAPACK
BerkeleyGW,
Computational Design of Novel LAMMPS,
Energy Materials Crtosime S g VASP, FFT, Sy
ScaLAPACK
Both, but
Advanced Light Source Banda No Some FFT mostly
weak
Advanced Modeling for Next- FFT,
Generation BES Accelerators Ryne No No ExaHDF5 ——
Combustion of alternative fuels
Jor transpor{raaon. sy.stems. - Chen No Yes Adios Weak
fundamental investigation using
direct numerical simulations
Rational Catalyst Design for VASP, FFT,
Energy Production e Yes No ScaLAPACK Strong
Condensed Phase Studies with FFT,
CP2K Mundy No Yes ScaLAPACK Both
Accurate Scalable CaIculatzpns Global Both, but
for the Ground and Excited
Xantheas No Some Arrays, mostly
States of Complex Molecular
. ScaLAPACK strong
Assemblies
Molecular Dynamics of PNIPAM NAMD,
Agglomerates and Composite Deshmukh No Yes CHARMM, Both
Architectures FFT
Sampling Diffusive Dynamics on NAMD,
Long Timescales, and GROMACS,
Simulating the Coupled Miller No Some DL_POLY, Strong
Dynamics of Electrons and AMBER,
Nuclei MOLPRO
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7 BES and NERSC Trends

The following plots show the historical usage of computational hours (adjusted for
performance relative to Hopper hours) and archival storage for BES and all of NERSC. The
Xs are the anticipated needs from the Requirements Reviews. The solid lines are trend lines
fit to the historical usage. The materials science, chemistry, and geoscience portions of the
BES usage are also shown on the computational hours plot.
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BES and All NERSC Archival Storage
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8 Materials Sciences Case Studies

8.1 Computational Resources for the Nanomaterials Theory
Institute at the Center for Nanophase Materials Sciences

Principal Investigator: Paul Kent (Oak Ridge Ngational Laboratory)
NERSC Repository: m526

8.1.1 Project Description

This project is from the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge
National Laboratory, which is supported by the BES Scientific User Facilities Division. It is
included here with Materials Sciences case studies because of similarity in subject matter
and because NERSC allocations for this project are handled by Materials Sciences.

8.1.1.1 Overview and Context

Our project supports a varied set of calculations in support of the externally reviewed user
proposals and scientific thrusts of the Nanomaterials Theory Institute (NTI) of the CNMS.
We perform predictive calculations into the behavior and properties of nanoscale systems,
ranging from new energy efficient nanoscale catalysts to simulations of DNA used for
molecular electronics. A general trend is the study of increasingly realistic systems, in most
cases incorporating large length scales to properly simulate experimental conditions. Our
simulations are primarily first-principles (quantum mechanics) or classical molecular
dynamics-based atomistic simulations to determine the structure and properties of each
system. The calculations are therefore challenging, requiring extensive use of high
performance computing facilities at NERSC. The majority of calculations are too large or
complex to perform on midrange computer clusters.

Our largest runs are either performed or supervised by NTI staff using appropriate
applications, processor counts, and run configurations, as determined by careful
benchmarking. This process enables the most appropriate tools to be selected and
optimized for the task at hand. E.g., we have considerable experience in selecting between
and optimizing the different numerical implementations of density functional theory that
are available. We also make extensive use of classical molecular dynamics where suitable
potentials are available and multiscale simulation approaches for polymeric materials. The
former tends to utilize popular packages such as LAMMPS, while the latter tend to utilize
homegrown codes.

In addition to using conventional modeling based on molecular dynamics and quantum
mechanics, we also use methodology for global optimization of structures to help locate
ground state geometries (e.g., of organic monolayers on metal substrates for molecular
electronics applications) and to identify reaction intermediates and reaction pathways of
catalytic processes. Techniques include basin hopping, cluster expansions, and traditional
numerical global optimization approaches such as parallel tempering and genetic
algorithms. These methods are commonly used in materials-discovery/genome type
approaches and are computationally expensive, often consisting of thousands of single total
energy calculations. Our main goal is to improve our ability to effectively collaborate with
experimentalists, since the same methods can be used where experimental resolution and
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physical intuition are initially lacking, e.g., for complex surface reconstructions, and can

increase overall confidence in predictions.

Overall storage is not a significant consideration compared to some other fields, with
datasets typically in the Gigabyte range. Although these datasets will grow in proportion to
simulated system size and timescale, this volume of data remains relatively facile to store or
transfer to home institutions.

8.1.1.2 Scientific Objectives for 2017

Our goals include (1) a more thorough exploration and understanding of already identified
materials and chemical systems, and (2) an increasingly common discovery and exploration
of the properties of not-yet synthesized materials, using simulations of sufficient
sophistication that we can have confidence in the predicted results. Despite a number of
famous unresolved cases, such as high temperature superconductivity, there are currently
broad classes of chemicals and materials for which predictive methods exist that are quite
accurate. Instead, the key difficulty is often that these predictive methods are only effective
when the exact atomic structure or molecular conformation is known. A key challenge is
therefore to identify unknown structures, unknown reactions, and unknown reaction paths.
Currently, simulations that can identify, for example, unknown reactions via forms of
accelerated molecular dynamics (basin hopping, metadynamics, Monte Carlo etc.) remain
too expensive to apply except for the simplest of processes using relatively simple methods
for energies (classical force fields instead of quantum-mechanics based). A third objective is
to improve the confidence in our predictions, primarily through the use of improved
methodologies as they become computationally affordable (e.g., using quantum-based
methods to validate classical force field results).

8.1.2 Computational Strategies (now and in 2017)

8.1.2.1 Approach

For simplicity, we concentrate on simulations of atomistic systems, which currently
consume over 75% of our allocation.

In our atomistic simulations, the main task is to compute the energy and forces acting on a
set of atoms. This is performed using either classical-mechanics based potentials or (more
costly) using approximate solutions of the Schrodinger equation to incorporate the effects
of quantum mechanics. The trajectory of the atoms can then be integrated using simple
Newtonian mechanics. For classical simulations we make use of the very large number of
developed force fields implemented in codes such as LAMMPS. For simulations based on
quantum mechanics we primarily use density functional theory (DFT), as numerically
implemented within several variants of the plane wave pseudopotential approximation in
codes such a Quantum Espresso (“pwscf’) and VASP. For more accurate quantum
mechanical methods we utilize several forms of quantum chemistry and also quantum
Monte Carlo. However, the majority of our time is consumed by DFT. Property computation
is only occasionally a major consumer of time, for example, accurate band gaps of materials
require use of the GW method which scales with a much higher power of system size than
DFT. While previously highly specialized, these methods are becoming both commoditized
and expected by reviewers in the scientific community. In part this drives our requirements
for increased resources: minimum standards are improving.
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8.1.2.2 Codes and Algorithms

LAMMPS: a domain decomposed classical molecular dynamics code, with many integration
algorithms and numerical force fields.

Quantum Espresso, VASP, ABINIT: plane wave pseudopotential density functional theory.
MPI distributed FFTs and dense linear algebra, non-linear optimization.

All these codes are well studied, but should not be considered as monolithic applications
implementing a single algorithm. E.g. Both Quantum Espresso and VASP implement hybrid
density functionals and density functional perturbation theory, both of which have very
different costs and performance characteristics to conventional/traditional ground-state
DFT calculations.

8.1.3 HPC Resources Used Today

8.1.3.1 Computational Hours

We used 19.4 million hours in 2013, considerably more than our allocated 8.25 million,
thanks to early user time on Edison.

8.1.3.2 Parallelism

Typical production runs are in the hundreds of cores.

The scalability varies with simulated system size and convergence settings (basis sets, k-
points, spin). Although we have run DFT calculations on 40K processors with large enough
simulated systems, in practice scalability is limited to a few cores per atom (per k-point, per
spin). For todays production runs the largest number of cores is typically in the low
thousands. We typically use fewer than the maximum afforded by the
code/system/algorithm because of improved efficiency and sometimes for better
throughput.

Sometimes we have many independent tasks to run, but these can each use a few nodes, so
they are submitted as multiple jobs.

Both strong scaling and weak scaling are important for our project since both determine
overall time to scientific solution. Sometimes we have a single system to investigate, hence
strong scaling (and queue time) are very important.

8.1.3.3 Scratch Data
We typically consume 1 - 10s of Gigabytes.

8.1.3.4 Shared Data

We have a project directory 'm526' that currently has about 4 TB stored in it. Project
directories are a data sharing convenience, and very useful when, e.g., several students are
working on the same investigation.

8.1.3.5 Archival Data Storage
We had 15 TB of data stored in NERSC’s HPSS system in 2013.
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8.1.4 HPCRequirementsin 2017

8.1.4.1 Computational Hours Needed

Any one of our three goals can readily utilize an order of magnitude more computational
hours. For example, to increase accuracy we would prefer to transition to the routine use of
hybrid DFTs instead of local DFTs. These are normally more accurate the local DFTs, and it
is becoming increasingly expected (by reviewers, amongst others) that these calculations
are included in our studies. These methods scale notionally as N*4 instead of N*3 (N=
number of atoms), resulting in a cost at least one order of magnitude higher even in small
(tens-hundred atom) systems.

Although there are some exceptions, in general our calculations are not routinely large
enough to justify an INCITE allocation. We have access to no other large sources, e.g.,
through NSF.

8.1.4.2 Parallelism

If current methods are used, only thousands of cores will be used in 2017. If more accurate
methods are utilized and time is available, hybrid DFT can readily utilize tens of thousands
of cores and such methods may scale up to hundreds of thousands.

We occasionally compute in a high throughput mode (many calculations to be performed
simultaneously), or utilize a configuration sampling approach. Potentially this can involve
dozens-to-hundreds of calculations.

8.1.43 1I/O

We will probably write tens of Gigabytes per run and we would hope that /0 time is no
larger that about 2.5% of the run time.

8.1.4.4 Scratch Data

We will need several terabytes of scratch space to store the computed quantum mechanics
wave functions, which increase with system size.

8.1.4.5 Shared Data

The project directory requirement will probably increase to about 10TB, driven primarily
by an increase in the number of configurations and longer trajectories.

8.1.4.6 Archival Data Storage

We estimate needing about 10 Terabytes per user in 2017 for NERSC HPSS, the driver again
being an increase in the number of configurations and longer trajectories. With about 60
users (2013 value), that translates to 600 TB of archival storage.

8.1.4.7 Memory Required

We need 64 GB per node, particularly if one-sided communications are well supported.

8.1.4.8 Emerging Technologies and Programming Models

Some of the codes we use are ready, e.g., CUDAized or very highly threaded. We know how
to do the translation, rewrite etc., but due to a shortage of human resources and the

Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 27



requirements to publish, we focus only on what we absolutely must change to obtain good
performance on installed and upcoming computer systems, meaning that we typically
transform only the most critical paths.

We plan to standardize on open community codes as much as possible, to avoid the
difficulties of contributing to proprietary codes and to benefit from international
contributions. We hope NERSC focuses effort on open codes and actively steers users
towards them.

8.1.4.9 Software Applications and Tools

We'll need the same applications and tools as 2013, only sufficiently scaled and updated for
any new architectures:

LAMMPS: a domain decomposed classical molecular dynamics code, with many integration
algorithms and numerical force fields.

Quantum Espresso, VASP, ABINIT: plane wave pseudopotential density functional theory.
MPI distributed FFTs and dense linear algebra, non-linear optimization.

8.1.4.10 HPC Services
We'll need the same as we do in 2013, only updated.

8.1.4.11 Time to Solution and Throughput

For 2017, time to solution, throughput, turnaround, and job scheduling remain a concern.

8.1.4.12 Data Intensive Needs

We don’t have any special requirements in this area.

8.1.4.13 Additional Comments

The most important feature of an HPC system is reliability. We look to NERSC to provide
reliable FLOP/s combined with good consulting, training, and support.
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8.1.4.14 Requirements Summary

Used at NERSC Needed at NERSC

in 2013 in 2017
Computational Hours 19.2 M 500 M
Typical number of cores* used for 200 2,000
production runs
Maximum number of cores* that can be used 10,000 200,000
for production runs
Data read and written per run 0.05TB 0.1 TB
Percent of runtime for 1/0 2.5 2.5
Scratch File System space TB TB
Shared filesystem space 4TB 10 TB
Archival data 15 TB 600 TB
Memory per node 64 GB 64 GB

* “Conventional” cores
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8.2 The Materials Project

Principal Investigator: Kristin Persson (Lawrence Berkeley National Laboratory)
Additional Worksheet Author: Anubhav Jain (Lawrence Berkeley National Laboratory)
NERSC Repositories: matgen, matcomp

8.2.1 Project Description

8.2.1.1 Overview and Context

Major technological advancement is largely driven by the discovery of new materials. The
performance of materials like solar cells and batteries greatly influence important societal
issues like the nature of our future energy supply. However, materials discovery today still
involves significant trial-and-error: decades of research are needed to identify a suitable
material for a technological application and decades more to prepare it for
commercialization.

The goal of the Materials Project (online at https://www.materialsproject.org) is to
accelerate materials discovery and education through advanced scientific computing and
innovative design methods, scale those computations to cover all known inorganic
compounds, and disseminate that information and design tools to the larger materials
community. Stated differently, our goal is to automatically compute the properties of new
materials so that experiments and detailed studies are focused on only the most promising
options. This effort requires substantial cross-disciplinary efforts in materials theory, high-
throughput computing, experimental and application specific materials knowledge,
computer science, data mining, and database science.

Currently, over 4,500 users are registered for the Materials Project. Data are available for
30,000 compounds, and seven different interactive “apps” allow the user to explore the data
and perform high-level analysis. External users that used the Materials Project dataset and
apps to perform scientific studies have published at least four peer-reviewed papers.

The Materials Project is an example of a large-scale collaboration that leverages many of the
resources offered by NERSC. In addition to raw CPU time for performing calculations, we
depend on codes compiled by NERSC such as VASP. NERSC hosts and maintains the
development and production MongoDB databases (used to drive the web site as well as our
workflow) as well as the community-facing web site as a NERSC science gateway. We use
the tape storage options for backup, and use the global project directories to store the raw
output data. NERSC staff help coordinate web site deployment and releases. Finally, NERSC
sets up, operates, and maintains a project-specific cluster (“Mendel”) that is used for many
of our computations.
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8.2.1.2 Scientific Objectives for 2017

The Materials Project’s goal for 2017 is to become an indispensable tool for materials
design that combines many achievements. First, we expect to provide researchers with
calculated data on hundreds of thousands and perhaps millions of compounds, making it the
largest single resource for materials data. Our computations will not only reveal properties
of compounds known to exist, but will also predict new compounds and calculate their
likelihood for existence using a combination of data mining techniques and ab initio
calculations. Each compound will be comprehensively characterized using a suite of
computational techniques (some too expensive to apply on a large scale today). These
techniques will reveal not only the electronic structure of each material but also mechanical
properties, thermal properties, optical properties, and defect character.

Rather than being a static data source, the Materials Project aims to be a full-featured
platform for materials design. Researchers will be able to request calculations via the web
or mobile platform, and submit them for computation on NERSC resources (a prototype of
this functionality already exists). Thus, the space of materials that are computed will start to
be “crowd sourced”. We will build state-of-the-art APIs to the data in order to enable large-
scale data analysis and data mining. Finally, we will allow users to build third-party “apps”
that can be integrated with the main web site, and increase outreach and collaboration with
experimental teams.

Achieving these objectives requires not only drastic increases in computational power (e.g.,
100 times current levels), but also significant improvements in other areas. We expect that
1 petabyte of easily accessible (i.e., not tape) disk space will be needed to store the raw
outputs of these calculations. The databases serving the web site and the automation
software must similarly be scaled across multiple machines (sharded, in MongoDB
language). Finally - and perhaps most importantly - queue policies and software must be
built that allow millions of small, independent, high-walltime jobs to execute on NERSC
supercomputers within a 1 year timeframe. It is important to note that with high-
throughput computing at HPC centers, the total number of CPU hours is rarely the limiting
factor, even at relatively moderate allocations (e.g., 10 million CPU hours). Rather, hundreds
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of jobs must be running continuously in order to make any significant dent in computing
budget, which is not possible given (current?) queue submission limits, job turnaround
time, and running job limits.
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Rapid virtual materials prototyping and discovery envisioned by the Materials Project

8.2.2 Computational Strategies (now and in 2017)

8.2.2.1 Approach

Our current scientific workflow is a series of electronic structure calculations performed
over tens of thousands of materials. Each electronic structure calculation typically
consumes 100 - 1000 CPU-hours, and uses third-party software (VASP) that does not
parallelize well past ~100 cores (we typically use 32-48 cores). The workflow for each
material currently encompasses about 4 such electronic structure calculations. However,
we expect that in the future each material will encompass up to 20 calculations or more as
we expand the set of properties that are computed for each material.

We developed our own general workflow software (“FireWorks”,
http://pythonhosted.org/FireWorks) targeted largely at running high-throughput scientific
workflows at HPC centers. The FireWorks software stores our workflows, launches jobs on
the clusters with the proper dependencies, and handles failures/restarts/duplicate
checking. The software submits jobs either to the Mendel cluster (owned by Materials
Project, but maintained by NERSC) or to the “thruput” queue on Hopper. Currently, each job
contains a single electronic structure calculation. However, we have recently built a
“bundling” feature into FireWorks that can submit hundreds of concurrent electronic
structure calculations within a single queue script (it is not yet used in production).

8.2.2.2 Codes and Algorithms

Our current main “workhorse” code is the Vienna Ab Initio Simulation Program (VASP).
Almost all our computing budget for FY2013 used this code.

We expect that in the future, the number of codes used will diversify, perhaps including the
Berkeley GW, ABINIT, Zeo++, and Boltztrap software packages.
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8.2.3 HPC Resources Used Today

8.2.3.1 Computational Hours

We used 18.8 million CPU hours of computing on DOE/ASCR-allocated resources at NERSC
in FY2013. This was actually a significant reduction in utilization from FY2012 due largely
to almost 6 months of downtime spent building a new workflow system. We expect this
number to go up drastically in FY2014. No significant computing was performed outside of
NERSC.

8.2.3.2 Parallelism

We typically use 32 cores (Mendel cluster) or 48 cores (Hopper) for running VASP. In our
internal tests, scaling is acceptable to 2 nodes (i.e., 1.7X performance using 2X processors)
but continuously degrades as more nodes are added. We use 2 nodes because it provides
good performance and sufficient memory to perform our calculations, but we have resisted
further parallelism since scaling reduces VASP efficiency. If the VASP code demonstrated
better scaling, we would use the additional processors in order to reduce walltime.

We run high-throughput computing, but we are submitting tens of thousands of individual
jobs rather than packing calculations into a single job. We may in the future pack together
~100 calculations within a single job. This would utilize 3,200-4,800 cores total.

The two types of scaling important to our project are “high throughput bundling” and
“strong scaling.” The high-throughput bundling (a form of weak scaling) would allow us to
run many small jobs within the constraints of an HPC environment. Strong scaling of the
VASP code would allow us to reduce our walltimes and increase overall throughput, and
should be combined with job bundling.

8.2.3.3 Scratch Data

About 1TB of scratch space is sufficient for our purposes. We regularly (and in fact,
automatically) move the results of our calculations from scratch to permanent storage in
projectdirs.

8.2.3.4 Shared Data

We have a projectdir called “matgen”. It serves as the repository for all our raw outputs,
currently hosting about 50 TB of calculations. One issue we’ve had is the need for about
75TB or more of projectdir space; we’ve maxed out our projectdir quota several times and
had to delete raw outputs of low importance as well as shut down our entire workflow.
Note that our calculations need to be easily accessible (i.e., not on tape) because new
calculations depend on output files from older calculations, and adding new features to the
database often requires reparsing old runs.

8.2.3.5 Archival Data Storage

We have used about 46 TB of space in HPSS at NERSC. We have backed up some of our old
calculated data here, and store some of our very old DB snapshots here as well.
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8.2.4 HPC Requirementsin 2017

8.2.4.1 Computational Hours Needed

A total factor of about 100X over 2012 usage will be required in FY2017. That translates to
about 1 billion current NERSC MPP hours. The number of computing cores needed scales
linearly with the number of materials we expect to compute. We expect to compute about
10X the number of materials per year in FY2017 than we do today. Separately, we have built
a system whereby individual research groups can contribute workflows for expanding the
number of properties computed per material. These new properties tend to be more
computationally expensive than basic electronic structure calculations, ranging from
doubling the total computation time to adding perhaps a factor of 100X as much computing
needed for a single material. We do not expect to run the most expensive calculations over
every material in the database, but we do expect another factor of 10X in computing to
come from performing higher order methods across the database. Thus, we get a total factor
of about 100X our 2012 usage.

8.2.4.2 Parallelism

Parallelism in the future depends on the degree to which the third party codes we employ
improve their concurrency. While we expect that these codes (e.g. VASP, ABINIT, etc.) will
make significant strides towards increased parallelism (perhaps to 10,000 cores), but this is
difficult to predict in advance.

We will strive to use the maximum parallelism afforded by the codes that we use. If the
queuing systems in 2017 stay similar to those of today, we will almost certainly be bundling
hundreds of jobs within a single queue submission in order to simultaneously use many
cores.

We expect that our computational needs will diversify as we include more properties per
material. For example, when adding optical properties of materials to our workflow, some
of the calculations involve serial codes (in particular, BoltzTrap). Other codes (for obtaining
a different set of optical properties) for calculating the GW or Bethe-Salpeter approximation
may already scale to 1,000 processors. Thus, we expect to be running a spectrum of codes
that range in parallelism from 1 processor to perhaps 10,000 processors.

8.243 1/0

Each run writes (on average) about 200GB of data (however, we have millions of runs to
perform). In general, I/0 time and bandwidth is not a large concern for our project.

8.2.4.4 Scratch Data

At this time, we expect that moderate scratch space (e.g., 5TB) will be sufficient in 2017. As
mentioned previously, we automatically move completed runs to our shared global project
directory immediately after completion through our workflow software. Our scratch
footprint is therefore expected to remain light.

8.2.4.5 Shared Data

We expect to need at least 1 Petabyte of shared data in our global project directory in 2017
to store the raw output files. One way to reduce this need would be to devise a system
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whereby information could be flexibly, quickly, and automatically retrieved from tape as
needed. Such projects have previously been initiated at LBL’s Computation Research
Division, but to our knowledge have not been integrated at NERSC.

8.2.4.6 Archival Data Storage

We will need to be able to back up our expected 1 Petabyte of raw output files, plus perhaps
a few hundred additional terabytes for DB backup.

8.2.4.7 Memory Required

At this time, we expect about 64 GB of memory per node (about 128 GB/node would be
useful). The codes we currently use do not expect more memory than this. It is difficult to
predict if we will be using theoretical methods that require more memory in 2017.

8.2.4.8 Emerging Technologies and Programming Models

Since we do not develop our own electronic structure codes and use third-party software,
our ability to use these technologies depends on third party developers. Currently, the
electronic structures codes we use cannot exploit emerging technologies like GPUs.

8.2.4.9 Software Applications and Tools

We will need compiled electronic structure codes (VASP, ABINIT, etc.), Python, MongoDB,
and Git support.

8.2.4.10 HPC Services

We expect to continue needing shared project space, web gateway support and hosting, and
database hosting.

8.2.4.11 Time to Solution and Throughput

We are generally fairly forgiving in “time to solution” (see exception in 5.13), but as
mentioned previously we do have problems with throughput when trying to submit many
small jobs and still utilize large allocations.

8.2.4.12 Data Intensive Needs

Our application like many others generate large amounts of data that needs to be accessed
regularly. We have previously encountered some resistance (though never rejection) in
increasing our project directory quota past 40TB. Either project directories should be
allowed to significantly expand storage (a factor of 10 or more) or tape storage should be
made as almost as easy to use as project directories (from a programming standpoint). For
example, we would like to be able to write a Python program that seamlessly grabs specific
data from tape storage as needed as easily as opening a file path.

8.2.4.13 What Else?

Almost every science application - ours included - involve times where “time to solution” is
at baseline, and other times when “time to solution” is critical to scientific productivity or an
upcoming review or conference. In our case, when initially sketching out and debugging
new calculation workflows for materials, “time to solution” is especially important. Waiting
3 days in a queue just to find out that a workflow (which may only be 500 total CPU hours of
computation) has a bug is a huge impediment to scientific output. Given that accounting for
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nuances in new workflow design often requires many cycles of iteration and debugging,
months of productivity can be “lost to the queue”. This is not a problem for NERSC’s
utilization of its CPU cycles, but it serves as a series of very impactful speed bumps on the
road to scientific breakthroughs.

Currently (and to our knowledge), NERSC provides two official solutions for quick
turnaround: the “debug” queue and the “premium” queue. Neither of these is satisfactory.
The “debug” queue is fundamentally flawed because it arbitrarily constrains the ‘shape’ of
the job to 30 minutes wall time and ~500 nodes. One cannot use this to debug codes
requiring larger wall times or more nodes. In our specific case, we cannot use this queue for
debug purposes because our electronic structure codes will require more than 30 minutes
to report failure or success. Similarly, the “premium” queue also restricts the shape of the
job to an arbitrary wall time and core count. This queue may also have problems regarding
users wanting to quickly use their unused allocations at the expense of the waiting time of
other users.

NERSC should implement better strategies for variable “time to solution” needed by users.
Clearly, everyone cannot be at the top of the queue all the time. But, perhaps everyone
should be able to be at the top of the queue at some time of their choosing (without
contacting NERSC), and unrestricted by the shape of the debug or premium queues for their
high-priority jobs. For example, Materials Project, in addition to a 10M total allocation,
might also be awarded 100,000 CPU hours of “high priority” time. These 100,000 CPU hours
could be applied to any NERSC queue, but with high priority. It could be used before
scientific conferences, or to increase turnaround during iterative workflow development
(we would use it for the latter). This may not be a perfect solution, but a better strategy for
variability in time to solution for all shapes of workflows should be targeted.

One other concern requires jobs requiring large walltimes. Not all codes can be strongly
scaled to reduce walltimes. For example, the VASP code we run requires several days of
walltime, and there are many such users at NERSC. NERSC has very little support for long
walltime jobs, and almost no fallback strategy when long walltime is needed. An “automatic
checkpoint/restart” strategy was once pitched to our team and would be fantastic for long
wall time users, but it does not seem to have been released.
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8.2.4.14 Requirements Summary

Used at NERSC Needed at NERSC
in2013 in2017

Computational Hours 18.8 M 1,000 M
Typical number of cores* used for 32-48 unknown
production runs
Maximum number of cores* that can be ~100 unknown
used for production runs
Data read and written per run 0.001 TB 0.1TB
Maximum I/0 bandwidth negligible GB/sec negligible GB/sec
Percent of runtime for I/0 negligible negligible
Scratch File System space 1TB 5TB
Shared filesystem space 51TB 1,000 TB
Archival data 46 TB 1,000 TB
Memory per node 64 GB 64-128 GB
Aggregate memory 0.128 TB unknown TB

* “Conventional” cores

8.2.5 Additional Storage and /0O

The 1/0 is generally not a big concern for running VASP. A run generally results in a few
“large” files of about 200MB and some smaller files of about 20GB or less.
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8.3 Transport Phenomena in Novel Energy Materials

Principal Investigator: Jeffrey Neaton (Lawrence Berkeley National Laboratory)
Additional Worksheet Authors: Jack Deslippe, Zhenfei Liu, Sahar Sharifzadeh (Lawrence
Berkeley National Laboratory)

NERSC Repository: m1793

8.3.1 Project Description

8.3.1.1 Overview and Context

Our research concerns understanding the physics of charge transport and excited-state
phenomena in condensed matter systems of relevance to energy, with the aim of predicting
and designing new materials for energy conversion, storage, and carbon capture. Broad
materials classes such as oxides, organics, metal-organic frameworks, and interfaces feature
prominently. Although structurally distinct, these materials classes share astonishing
structural and chemical diversity; highly-localized, sometimes strongly-correlated
electronic states; and, in instances, appreciable non-covalent interactions. As such, they
simultaneously present significant opportunities for discovery and drive the development
of contemporary electronic structure theory.

A major theme of our work is to devise analytical and computational methods that exploit
connections between these disparate materials classes to create general approximations
and methods, design new materials, and understand novel phenomena. An ultimate aim is
the development of new intuition - or “design rules” - connecting emergent properties and
function to chemical composition and structure. As such, for many projects, we draw upon
and develop contemporary “first-principles” density functional theory (DFT)-based
approaches, theoretical methods at the nexus of condensed matter physics, quantum
chemistry, and computational materials. Below, we describe three projects that make
particular use of HPC.

Organic molecules and assemblies are of considerable interest for next-generation
photovoltaics and other energy conversion applications. Their performance and utility
hinges on the understanding and control of their spectroscopic properties, such as
ionization potentials and electron affinities in gas-phase and solid-state environments, and
orbital energy level alignment at interfaces. However, orbital energies and energy
differences within common approximations to density functional theory (DFT) (such as the
local density approximation, generalized gradient approximations, and hybrid functionals)
are known to dramatically underestimate these quantities, and a GW-Bethe-Salpeter
Equation (GW-BSE) approach is essential. We rely heavily on DFT codes and the
BerkeleyGW program for computation. We used almost 20M hours in 2013 and currently
require ~100 of TB of storage per year for computation and archival purposes.

A second research area is focused on studies to understand energy transport in biomimetic
and natural photosynthetic systems. The efficient transport of excitation energy in natural
photosynthesis is a functionality predicated on a complex and dynamic molecular
architecture, the underlying principles of which remain to be elucidated. We study energy
transfer between both dimers and periodic arrays of the light absorbing organic molecules.
The principal objective of the work is to generate detailed models of the absorption and
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transport of incident light energy by chromophore arrays with varying geometries,
orientations, and environments.

A third area of research involves detailed computational studies of charge transport
phenomena and spectroscopic properties of interfaces of complex dye molecules, such as
porphyrins, and conducting surfaces, such as gold, graphite, and graphene. In close
collaboration with experiment, we compute conductance, thermopower, and IV
characteristics of molecular junctions - individual molecules wired up to metallic electrodes
- to understand the relationship between chemical composition, atomic-scale structure, and
level alignment and transport properties. Density Functional Theory with local or semi-local
functionals are known to yield inaccurate level alignment between Fermi level of the
junction and frontier orbital energies of the contacted molecule, often resulting in a
significantly overestimated conductance. We use a GW-based method to correct the energy
level alignment in the junction that leads to quantitative agreement with and understanding
of experimental measurements. Practically, a large number of metal layers are needed for
these calculations, and for sufficiently large molecules, in-plane lattice parameters of large
lateral dimension are required. This leads to supercells containing 100s of atoms for the
most complex junctions, and HPC is essential.

8.3.1.2 Scientific Objectives for 2017

One of our science goals is to achieve improved understanding and control of molecular-
scale charge transport phenomena, which are central to the realization of next-generation
energy conversion materials. The low efficiency of organic and other nanostructure-based
solar cells can be connected to ineffective charge separation at donor-acceptor (and p-n)
junctions, and charge collection across interfaces with metallic contacts. For many organic
solids and interfaces of interest, e.g., organic semiconductors and donor-acceptor organic
interfaces, only ordered model structures have been considered so far. More realistic
structural models exhibit significant complexity and can involve hundreds or thousands of
atoms.

Donor-acceptor interfaces are a crucial component of working organic photovoltaic devices,
though the nature of charge transfer and dissociation at these interfaces is not well
understood. By 2017, we would like to compute the spectroscopic properties of more
realistic and experimentally realized organic donor-acceptor interfaces, with a particular
focus on quantitatively understanding the relationship between interface structure and
excited-state properties. The understanding gained in such calculations will allow the
design of more efficient photovoltaic materials.

In recent years, “materials genome” type approaches have successfully demonstrated the
utility of data mining in material design, particularly in the field of battery development. In
order to apply a materials genome type approach to photovoltaic materials, one must be
able to quantitatively predict both the ground and excited-state properties of the materials
involved. For example, one would want to screen the relative energy level alignment in
various donor/acceptor pairs. The GW-BSE methodology has proven extremely accurate at
predicting such excited state properties. However, the approach has, until now, typically
been applied to one system (typically bulk or periodic systems not containing transition
metals) at a time with significant operator involvement. By 2017, we would like to be
completing GW-BSE computations across wide datasets of materials and interfaces for the
purposes of evaluating materials for energy applications. Further, we plan to achieve deep
understanding excited states of complex, light-harvesting molecules adsorbed on a metal or
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semiconductor surface, as it is crucial to the conductance, spectroscopy, or catalytic activity.
Currently, approximate GW methods developed within our group work well for weak
adsorption and negligible charge transfer between the surface and the molecule. We plan to
extend the method to intermediate and strong coupling regimes through detailed, more
rigorous GW-BSE calculations on these complex hybrid systems.

8.3.2 Computational Strategies (now and in 2017)

8.3.2.1 Approach

Generally speaking the goal is to compute a description of the many-body electronic states
of a variety of materials from first-principles. Typically we use the DFT formalism to
describe the ground state electronic-structure of a material and then use the GW-Bethe-
Salpeter Equation approach (starting from DFT) to describe the excited state properties of a
material. These approaches involve the construction and solution of dense eigenvalue
problems. However, it is often the construction or application of the operators that consume
the most resources. See the next section for more details.

For studies of electron transport, an important goal is to calculate transmission as a
function of energy for a number of molecular junctions, often consisting of supercells of
100s of atoms. This is done via a non-equilibrium Green’s function or scattering-state
framework, and involves construction of the Landauer formula, which consists of
multiplication of coupling matrices and Green’s function matrices of the junction. This is a
non-self-consistent step following the self-consistent convergence of density matrix of the
junction. The coupling matrices are computed at DFT level, which involves generating
surface Green’s functions of the leads. In the approximate GW method we have recently
developed, the Green'’s functions of the extended molecule are computed at DFT level first,
and then the poles of the molecular block of the matrix are shifted using non-empirical
approximate self-energy, resulting in accurate level alignment between Fermi energy and
frontier orbital energies of the molecule. In the non-self-consistent calculation of Landauer
formula, a large number of k-point is desired, because the transmission converges slower
than density matrices over k-point. Also, a large number of energy points are needed, to
generate a smooth transmission curve as a function of energy. Both of these require HPC
resources.

8.3.2.2 Codes and Algorithms

DFT Codes (Quantum ESPRESSO / PARATEC / VASP / SIESTA etc.):

These are computer codes for electronic structure calculations and materials modeling at
the nanoscale based on density-functional theory, plane waves, and pseudopotentials (both
norm-conserving and ultrasoft).

Typically these codes construct and solve the Kohn-Sham equations self-consistently, where
each self-consistent iteration involves the solution (or partial solution) of a Hermitian
eigenvalue problem via iterative methods like conjugate gradients or Davidson. These
approaches utilize the fact that the operation of our operator, H, on an arbitrary vector,
scales as O(N) instead of the typical O(N*2).
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Typically the bottlenecks include the application of the Hamiltonian matrix to a vector
(done via parallel FFTs), and the construction and exact diagonalization of the Hamiltonian
in a subspace (involving parallel matrix-multiplication and diagonalization via ScaLAPACK).

GW Codes (BerkeleyGW):

The BerkeleyGW Package is a set of computer codes that calculates the quasiparticle
properties and the optical responses of a large variety of materials from bulk periodic
crystals to nanostructures such as slabs, wires and molecules. The package takes as input
the mean-field results from various electronic structure codes such as the Kohn-Sham DFT
eigenvalues and eigenvectors computed with PARATEC, Quantum ESPRESSO, SIESTA,
Octopus, or TBPW (aka EPM).

Typically the problem involves the setup and solution of the Dyson's equation - similar to
the Kohn-Sham equations in DFT but consisting of an energy-dependent, non-hermitian
self-energy operator.

The code is heavily dependent on FFTs (using libraries like FFTW and MKL) and dense
linear algebra matrix-multiplication, diagonalization and inversion. The code typically uses
threaded libraries and custom MPI/OpenMP parallelization around these libraries.

Transport Codes (Scarlet and TranSiesta)

The TranSiesta utility is part of the Siesta package (although Siesta requires special flags in
compilation), and the additional operations on top of Siesta are two-fold: (1) after a regular
DFT convergence of density matrix of extended molecule (typically consists of seven layers
of metal atoms and the molecule and binding sites in between) using periodic boundary
conditions, the code calculates an open-boundary density matrix, by integrating the
imaginary part of the lesser Green’s function of the extended molecule over energy up to
Fermi level. The Fermi level is determined from the regular Siesta DFT calculation and is
fixed in this step, and the integral is computed on a contour rather than directly along a real
axis. In this way, the coupling of the extended molecule to two semi-infinite leads is taken
into account in the calculation of the surface Green'’s function of the leads, and then these
surface Green’s functions are used in the calculation of self-energy in Green’s function of the
extended molecule. (2) After the convergence of the open-boundary density matrix, the
Hamiltonian matrices of the two leads and of the extended molecule are stored in files on
disk, and the transmission is calculated using Landauer formula in a non-self-consistent
step, as described in Section 3.1. The second step is done with the “tbtrans” utility in the
package. The code reads in the Hamiltonian matrices, and constructs the Green’s function of
the extended molecule and the coupling matrices of the extended molecule to the two semi-
infinite leads via a surface Green’s function of the leads. Finally, the Green’s function and the
coupling matrices are used to compute transmission matrix using Landauer formula. The
transmission at a particular energy is the trace of the transmission matrix at that energy.

It is the second step that requires large number of cores, as a large number of k-points is
needed to converge the transmission function. The tbtrans utility parallelizes over k-points,
and the number of cores that can be used is up to the same number of k-points. In this way,
each core does a single k-point calculation. After an initial loading of the Hamiltonian
matrices of the two leads and the extended molecule, the code scales linearly as the number
of energy points, as each energy point needs to be calculated separately. Overall the code
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scales as O(N3), where N is the number of basis functions in the extended molecule, due to
the operations of matrix multiplication (Landauer step) and inversion (Green’s function

step).

Alternatively there is another version of the tbtrans utility in the trunk version of
TranSiesta. This new utility parallelizes over energy points, and after the initial loading, the
code scales linearly as the number of k-points, and each k-point needs to be calculated
separately. Overall the code scales O(N3), where N is the number of basis functions in the
extended molecule, just as explained in the previous paragraph. Depending on whether one
has more energy points or more k-points, one could choose from the two flavors of tbtrans
to achieve greater computational efficiency.

8.3.3 HPC Resources Used Today

8.3.3.1 Computational Hours

In 2013 we used about 19 Million hours at NERSC. We have additional time via NSF and
ALCC at ALCF (~10 Million hours)

8.3.3.2 Parallelism

At NERSC today we use anywhere from 100 to 30,000 cores in a run, depending on the
program being used (see above). The maximum number of cores we could problem use is
about 10,000 for DFT computations and about 100,000 for GW. We generally use fewer
than that for faster turn around when running multiple computations/steps at once. We do
many medium size systems, where the sweet spot (in terms of efficiency) is less than full
scale. We do not currently compute using High Throughput Computing mode, although this
is an area we would like to move into with GW computations on large sets of materials in
the future.

Both strong scaling and weak scaling are important. We would like to be able compute
large sets of medium size materials quickly (and potentially in parallel) as well as study

larger, more complex systems such as defects and interfaces etc.

8.3.3.3 Scratch Data

We typically consume about ~10-20TB of temporary disk space.

8.3.3.4 Shared Data

We currently have two project directories, m1694 and mftheory, that are used mostly for
sharing files among members.

8.3.3.5 Archival Data Storage

We currently have about 100 TB stored on HPSS.
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8.3.4 HPC Requirements in 2017

8.3.4.1 Computational Hours Needed

We estimate that we'll need about 250 million hours from NERSC in 2017. We expect to
have a significant allocation from NSF also.

The primary factor driving the need for more hours is that we plan to study more complex
and realistic systems and apply GW approaches to large material datasets for genomics-like
approaches.

8.3.4.2 Parallelism

We expect to use 50,000-100,000 for studying large systems and about 5,000-25,000 for
high-throughput studies of materials databases. The maximum that could be used is greater
than 100,000, assuming a hybrid MPI/OpenMP programming model. For our genomics-like
approaches we may have as many as ten or so jobs running concurrently and about 10
multiple tasks per job.

8.3.43 1I/0

We estimate having to write about 1-50TB for intermediate files (roughly equivalent of
checkpointing).

An 1/0 bandwidth of 100s of GB/s in practice would be ideal and less than 20% of run time
devoted to I/0 would be ideal.

8.3.4.4 Scratch Data

We estimate that ~100-200 TB would be ideal. It would allow us to run multiple large
concurrent calculations. The primary cause of this growth is increase in size and complexity
of the systems we simulate. Data needs scale as N*2 (where N is number of atoms).

We estimate needing about 20 TB for use in sharing large intermediate files between users.

8.3.4.5 Archival Data Storage

We estimate a need to store about 500 TB on HPSS. This is due to the need to store larger
amounts of input and resultant data for large sets of material systems and for storing some
intermediate data.

8.3.4.6 Memory Required
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BerkeleyGW can utilize a hybrid OpenMP/MPI programming model that alleviates the
memory requirements somewhat on nodes with many compute cores. However, the DFT +
GW workload is fairly memory intensive ~100 GB per node would be ideal to split among
MPI tasks.

8.3.4.7 Emerging Technologies and Programming Models

Quantum ESPRESSO has basic OpenMP support. BerkeleyGW has fairly efficient OpenMP
support. Both codes have very experimental GPU support.

8.3.4.8 Software Applications and Tools

Efficient BLAS/LAPACK/ScaLAPACK (or alternatives like ELPA, Elemental)
Efficient FFT

Fortran/C compilers

Efficient Parallel 10 via HDF5

8.3.4.9 HPC Services

We would probably need all of the suggested services, including consulting or account
support, data analytics and visualization, training, support servers, collaboration tools, web
interfaces, federated authentication services, and gateways.

8.3.4.10 Time to Solution and Throughput

We don’t have exceptional needs in this area.

8.3.4.11 Data Intensive Needs

We are "mostly" satisfied with HPSS. Our data management plan is that we currently rely
on individual researchers using archival storage (HPSS) for their data. Are thinking about
data management and which data needs to be archived for long periods as opposed to that
which could be recreated fairly easily.
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8.3.4.12 Requirements Summary

Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours 18.7 M 250 M
Typical number of cores* used for 100-30,000 10,000-200,000
production runs
Maximum number of cores* that can be used 100,000 100,000+
for production runs
Data read and written per run 0.1-2TB 1-20TB
Maximum I/0 bandwidth 1-3GB/sec (in 100GB/sec
practice)
Percent of runtime for 1/0 20 20
Scratch File System space 10TB >100TB
Shared filesystem space 0TB 20TB
Archival data 45 TB 500TB
Memory per node 40GB ~100GB
(assuming more
cores per node).
Aggregate memory ~10TB >100TB per
100,000 cores
(1GB/core)

* “Conventional” cores
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8.4 Computational Design of Novel Energy Materials

Principal Investigator: Jeffrey C. Grossman (Massachusetts Institute of Technology)
Worksheet Author: Dr. Yun Liu (Massachusetts Institute of Technology)

NERSC Repositories: m1797, Design of high-efficiency solar thermal fuels via first-
principles computations; m655, Quantum simulation of nanoscale energy conversion

8.4.1 Project Description

8.4.1.1 Overview and Context

Current technologies that capture, convert, or store energy rely critically on materials
innovation. For example, solar thermal fuels (STF) can store the energy of sunlight and
release it later in the form of heat, offering an emission-free and renewable solution for both
solar energy conversion and storage. However, this approach is currently limited by the lack
of low-cost materials with high energy density and high stability in the charged state.
During the past few years, computational simulations have demonstrated promising
potentials in understanding, discovering, and designing novel materials to tackle such kind
of problems. It has been shown in our group that by using quantum mechanical simulations
it is possible to design new class of functional materials that have the potential to meet the
criteria of STF applications. In this project, we specifically looked into the following
research topics:

Solar Cells Based on Monolayer Materials

Energy alignment in Metal/Organic Interfaces and its effect on solar cell efficiency
Optical properties and excited state dynamics of STF

High-throughput search of novel STF materials

. Thermal and electronic transport in pattered graphene for thermal electric
applications

S

2. molecules
change shape

1. molecules 3. energy AH per
absorb sunlight molecule stored in
\m‘"\ﬁd state chemical bonds

@ Photo-excited
state
6. molecules revert 4. apply “trigger” (e.g.,
to ground state heat, catalyst)

5. stored solar energy
AH released as heat

Basic operation of a solar thermal fuel, with an azobenzene-derivitized
carbon nanotube, one of the proposed HybriSol fuels. H, C, N, and O are
white, gray, blue, and red, respectively.
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To achieve our goals, we have applied a combination of various computational techniques,
including empirical force field molecular dynamics (MD), density functional theory (DFT),
time-dependent density functional theory (TDDFT), GW and Bethe-Salpeter calculations.
Because of the complexity of the systems we studied and the high accuracy method we
employed, our simulations are challenging and the use of HPC resource is thus critical.

8.4.1.2 Scientific Objectives for 2017

As for 2017, we are expecting to extend our current research fields in all aspects. We are
planning to look into patterning and functionalization in 2D materials for solar cell and
thermal electric applications, photophysics of STF with large templates and functionalized
groups. With the increase in system size and method accuracy, those calculations are
expected to be computationally very intensive.

8.4.2 Computational Strategies (now and in 2017)

8.4.2.1 Approach

The methods we primarily used are empirical MD, DFT, TDDFT, GW and Bethe-Salpeter
calculations. Most of the time the thermodynamic stability of a given system is calculated
using DFT simulations. For large systems that are beyond the capability of DFT simulations
at the present time, empirical MD can give reasonable result with much less computational
effort. GW and Bethe-Salpeter calculations are used to model the adsorption of monolayer
material based solar cells. TDDFT is employed to calculate light adsorption and excited state
relaxation dynamics for STF.

8.4.2.2 Codes and Algorithms

The LAMMPS code allows us to carry out empirical force field simulations and calculate
thermal conductivities of graphene layers. It also enables us to do a fast pre-screening for
our high-throughput search of novel STF materials. DFT methods as implemented in the
VASP code are extensively used across all of our research topics to calculate ground state
energy and structural stabilities. GW with Bethe-Salpeter equation calculations are also
carried out using the VASP code. DFT and TDDFT as implemented in real space in the code
Octopus are used to calculate adsorption spectra and excited-state dynamics of composite
systems involving organic molecules and carbon nanostructures. The Quantum-Espresso
code and Gaussian code are used to calculate phonon modes and dynamic stabilities of
those systems.

8.4.3 HPC Resources Used Today

8.4.3.1 Computational Hours

We used a total of 15.4M hours at NERSC in 2013. We also used a total of 2.6M SUs on
Stampede, an NSF HPC resource. We have three local clusters in our group with a total of
2,000 cores that we use to run smaller calculations.

8.4.3.2 Parallelism

For LAMMPS simulations, we typically use 120 cores at a time, depending on the size of the
system. A VASP calculation of relaxation and ground state energies typically runs on 96
cores. GW and Bethe-Salpeter calculation usually takes around 240 cores per job due to the
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amount of memory requested. Phonon calculations using Quantum-Espresso and Gaussian
typically runs on 96 cores. Octopus typically needs around 300 cores to do TDDFT
propagations.

The scaling for VASP calculations for our systems is good up to 300 cores. LAMMPS does
scale well with larger systems up to 10,000 of cores. With production runs for the size of
our system, we estimate the maximum number of cores we can use will be around 1,000.
Octopus parallelizes well up to 10,000 cores.

Usually we are using less than the maximum number of cores we could possibly use to
reduce the queuing time of each job and increase the overall production rate. Also the
parallelization depends strongly on the size of the system we are simulating and for smaller
systems it is more reasonable to use less number of cores. For the high-throughput search
of STF material, we utilize the “thruput” queue on Hopper. We are able to run 500
calculations concurrently each time.

Since we have a wide range of research subjects, the scaling needs are broad. For TDDFT
simulations, High-throughput calculations, and large-scale empirical MD simulations,
parallelizing on many cores is critical to solve the problem within a reasonable time frame.

8.4.3.3 Scratch Data

The maximum amount of scratch data generated during one batch of jobs would be around
1TB. The total amount of scratch space we use is around 10TB.

8.4.3.4 Shared Data
We have a project folder g2e. We had 7 TB stored at the end of 2013.

8.4.3.5 Archival Data Storage
We used 7TB of archival storage in 2013.

8.4.4 HPCRequirementsin 2017

8.4.4.1 Computational Hours Needed

To achieve our scientific goals for 2017, we expect to need 800M hours.

To model larger functionalized materials for solar cell and thermal electric applications, the
simulation system must be built on large super cells. If we double the size of the simulation
cell in 2D planes, the number of electrons to be simulated will be 4 times more than what
we currently have. As DFT calculation expenses increase with the cubic-order of number of
electrons, 4 times increase in number of electrons will result in 64 times more mathematical
operations in DFT simulations.

A single production job with a 1,000 atoms functionalized structure will take 48 hours using
1,000 cores to finish, taking 4-times per-core speed-up after 4 years into account. To
investigate 50 structures for solar cell applications, it would need 100*48*500 = 2.4M hours
for the DFT calculations. The GW and Bethe-Salpeter calculations will need 1.0M hours for a
single large-sized (200 atoms) system. The total estimated resources that we will need are
52.4M hours for investigating 50 structures.
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Similar analysis will be true also for thermo-electric application simulations with larger
functionalization groups. With a system size of 1,000 atoms, relaxation expect to take 300
steps with 5 hours per step on 1000 cores, which will be 300*5*1000=1.5M hours. Density
of States calculation will take 24 hours to run on 4,000 cores, which sums up to
1.5M+24*4000=1.6M per each structure. To calculate 12 samples, it will need a total of
12*1.6=19.2M hours.

To explore the photophysics of solar thermal fuels with large templates such as high index
nanotubes, the size of the system will be double the size of the current molecular system.
The Casida approach will be scaling with the sixth order of number of electrons due to
matrix diagonalization. A calculation with double the number of electrons will take 26, or 64
times more computational resource to finish. Each structure will use 100 hours on 64,000
cores to finish the Casida TDDFT calculations. Because of the sixth order scaling of the
TDDFT calculations, the DFT part will be negligible comparing to that. Therefore, for each
structure it will take 100*64000 =6.4M hours. To calculate 5 such structures will need 6.4*5
= 32M hours.

To sum that up, the total amount of resource required to accomplish the aforementioned
goals in 2017 will be 52.4M+19.2M+32M = 103.6 M. Here we have assumed a four-fold
increase in single-processor performance, which means our requirement is 416 M hours in
units of 2013 NERSC MPP hours.

8.4.4.2 Parallelism

We expect to be running on 1,000 cores for typical DFT calculations and up to 64,000 cores
for TDDFT simulations. Octopus has already demonstrated good parallelization over more
than 16,000 cores and therefore can be expected to scale well.

8.4.43 1/0

We expect to have around 5~10 times increase of I/0 due to the increase of number of
electrons. Currently the largest 1/O bandwidth request comes from Quantum-Espresso
calculations of phonon modes, which is around 5 GB/sec per single job. Therefore we expect
to have maximum I/0 bandwidth request of around 50GB/sec by 2017.

8.4.4.4 Scratch Data

Based on similar reasons as above, we expect 5~10 times increase in scratch files, which
will be 50TB by 2017.

8.4.4.5 Shared Data

We estimate a 5~10 times increase in data generation rate at the present level, which will
be around 70TB by the year 2017.

8.4.4.6 Archival Data Storage

With similar reasons, we expect to use around 70TB of archival data storage space.

8.4.4.7 Memory Required

With a good parallelization over more cores, we expect the memory requirement will be
similar to what we currently have. However, considering that each core will be roughly 4
times faster after 4 years, we will get 4 times more calculations done per core. Therefore the
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memory needed per core will be 4 times more than what we need at the present, which will
be around 8GB in 2017.

8.4.4.8 Emerging Technologies and Programming Models

We have noticed that the Quantum-Espresso code we use requires a relatively high 1/0
bandwidth to calculate the phonon modes of a mid-size system (~200 atoms). On many
other HPC resources, we cannot run more than one of such calculations at the same time as
it is pushing the system [/0 bandwidth limit. The high performance scratch file
architectures at NERSC enabled us with such calculations.

8.4.4.9 Software Applications and Tools

Besides the above-mentioned codes, we will also need the following software and libraries:

Intel C++ and Fortran compilers, MKL libraries, fatwa libraries, ScaLAPACK libraries,
GNUplot, VMD, SIESTA, Java, Python.

8.4.4.10 HPC Services
We would like to get the following consulting services from NERSC by 2017:

Code compilation, database server host (for high-throughput libraries generated), web
server host (same as above), cloud sync service.

8.4.4.11 Time to Solution and Throughput

As we have demonstrated above, as long as the parallelization over cores is large enough,
there would not be problem with throughput and time to solution.

8.4.4.12 Data Intensive Needs

By 2017 we expect to have a large library of candidate STF molecules generated from our
High-throughput simulations. It would be more convenient by then to host the STF
candidate material library on the NERSC computers with external accessible database and
web interface. In this way we could integrate data-generation, data-mining and new
material discovery together at the same place.
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8.4.4.13 Requirements Summary

Used at NERSC Needed at NERSC

in2013 in 2017
Computational Hours 154 M 416 M
Typical number of cores* used for 96 1,000
production runs
Maximum number of cores* that can be used 960 64,000
for production runs
Data read and written per run 2TB 10 TB
Maximum I/0 bandwidth 5 GB/sec 50 GB/sec
Percent of runtime for 1/0 0.1% 0.1%
Scratch File System space 10 TB 50TB
Shared filesystem space 7TB 70 TB
Archival data 7 TB 70 TB
Memory per core ** 2GB 8 GB
Aggregate memory 1.5TB 50TB

* “Conventional” cores

** Changed from per node to per core.
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9 Chemical Sciences Case Studies

9.1 Combustion of Alternative Fuels for Transportation
Systems — Fundamental Investigation using Direct
Numerical Simulations

Principal Investigator: Jacqueline H. Chen (Sandia National Laboratories)
NERSC Repository: mp241

9.1.1 Project Description

Over 70% of the 86 million barrels of crude oil that are consumed in this nation each day
are used in internal combustion engines. The nation spends about 1 billion dollars a day on
imported oil. Accompanying the tremendous oil consumption is the undesirable emissions
- nitric oxides, particulates, and CO; production. To mitigate the negative environmental
and health implications, there is legislation that mandates reductions in fuel usage per
kilometer by 50% in new vehicles by 2030 and greenhouse gases by 80% by 2050.
Although these dates may seem to be far off, the time required to bring new vehicle
technologies to market and to become widely adopted is lengthy.

Hence, the urgent need for a concerted effort to develop non-petroleum-based fuels and
their efficient, clean utilization in transportation is warranted by concerns over energy
sustainability, energy security, and global warming. Drastic changes in the fuel constituents
and operational characteristics of automobiles and trucks are needed over the next few
decades as the world transitions away from petroleum-derived transportation fuels.
Conventional empirical approaches to developing new engines and certifying new fuels
have only led to incremental improvements, and as such they cannot meet these enormous
challenges in a timely, cost-effective manner. Achieving the required high rate of innovation
will require computer-aided design, as is currently used to design the aerodynamically
efficient wings of airplanes and the molecules in ozone-friendly refrigerants. The diversity
of alternative fuels and the corresponding variation in their physical and chemical
properties, coupled with simultaneous changes in automotive design/control strategies
needed to improve efficiency and reduce emissions, pose immense technical challenges.

A central challenge is predicting combustion rates and emissions in novel low temperature
compression ignition engines. Compression ignition engines have much higher efficiencies
than spark ignited gasoline engines (only 20% efficiency) with the potential to increase by
as much as 50% if key technological challenges can be overcome. Current diesel engines
suffer from high nitric oxide and particulate emissions requiring expensive after-
treatments. To reduce emissions while capitalizing on the high fuel efficiency of
compression ignition engines constrains the thermo-chemical space that advanced engines
can operate in, i.e. they much burn overall fuel-lean, dilute and at lower temperatures than
conventional diesel engines. Combustion in this new environment is governed by
previously unexplored regimes of mixed-mode combustion involving strong coupling
between turbulent mixing and chemistry characterized by intermittent phenomena such as
auto-ignition and extinction in stratified mixtures burning near flammability limits. The
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new combustion regimes are poorly understood, and there is a dearth of predictive models
for engine design operating in these regimes. Basic research in this area is underscored in
the Department of Energy Basic Energy Sciences workshop report []] on “Basic Energy
Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels” which
identified a single overarching grand challenge: to develop a “validated, predictive, multi-
scale, combustion modeling capability to optimize the design and operation of evolving fuels in
advanced engines for transportation applications.”

This project addresses this challenge through first principles direct numerical simulation of
turbulent reactive flows on petascale machines. Fortunately, recent advances in chemical
kinetics of alternative fuels for transportation by the DOE Combustion Energy Frontier
Research Center, petascale turbulent reactive flow direct numerical simulation software -
S3D [Chen+09] and LMC [Day+00] - and high-performance computing suggest that first-
principles-based predictive tools for optimum integration of energy conversion/control
methodologies and new fuel compositions are possible. In particular we will perform a
suite of canonical target problems that are aimed at elucidating mixing, ignition and
combustion characteristics of low temperature engines burning alternative fuels using
state-of-the-art DNS tools: uniform mesh high-order DNS and block structured low-Mach
adaptive mesh refinement. In consultation with key stakeholders in the automotive
industry (e.g. Bosch Corporation and Cummins Corporation) and from the DOE Combustion
Energy Research Frontier Research Center addressing similar research issues, we plan to
perform a set of four direct numerical simulation target problems that together will address
the foremost design challenges for fuel efficient, low emissions internal combustion engines
burning alternative transportation fuels:

* Ignition characteristics of alternative fuels (oxygenated bio-fuels) and cetane
additives in homogeneous charge compression ignition engine environments

* Effect of turbulent mixing and multi-stage autoignition on low-temperature diesel
combustion (lifted flame stabilization)

* Combustion instability of lean hydrocarbon fuels (modes and mechanisms of
instability and their affect on turbulent burning velocity)

* Influence of thermal, composition and reactivity stratification due to staged
injection in Reaction Controlled Compression Ignition (RCCI) on flame dynamics and
autoignition.

9.1.2 Overview and Context

The advent of petascale computing applied to direct numerical simulation (DNS) of
turbulent combustion has transformed our ability to interrogate fine-grained ‘turbulence-
chemistry’ interactions in canonical and laboratory configurations. In particular, three-
dimensional DNS, at moderate Reynolds numbers and with complex chemistry, is providing
unprecedented levels of detail to isolate and reveal fundamental causal relationships
between turbulence, mixing and reaction. This information is leading to new physical
insight, providing benchmark data for assessing model assumptions, suggesting new
closure hypotheses, and providing interpretation of statistics obtained from lower-
dimensional laser-based optical measurements.
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In this research program we have developed and applied a massively parallel three-
dimensional (DNS) code, S3D, to building-block, laboratory scale flows that reveal
fundamental turbulence-chemistry interactions in combustion. The simulation benchmarks
are designed to expose and emphasize the role of particular phenomena in turbulent
combustion. The simulations address fundamental issues associated with chemistry-
turbulence interactions that underlie practical energy conversion devices. Some of the
interactions that have been studied in detail include: extinction and re-ignition (Lignell et al.
2011 Yang et al. 2013), premixed and stratified flame propagation and structure in intense
shear driven turbulence (Hawkes et al. 2012, Lyra et al. 2013), lifted flame stabilization in
autoignitive coflowing jet flames (Yoo et al. 2011, Yoo et al. 2010, Lu et al. 2010, and Luo et
al. 2012) and reactive jets in crossflow (Grout et al. 2011, Grout et al. 2012, Kolla et al
2012), and flame propagation in boundary layers (Gruber and Chen 2010; Gruber et al
2012).

In addition to the new understanding provided by these simulations, the resultant DNS data
are increasingly used to develop and validate predictive mixing and combustion models
required in coarse-grained engineering Reynolds-Averaged Navier Stokes (RANS) and
large-eddy (LES) simulations. Both a priori and a posteriori evaluation of key modeling
assumptions in RANS and LES have been performed based on benchmark DNS data, and
some recent modeling citations to these collaborations are summarized in Table 1.

DNS Scalar Flux Combustion and Scalar dissipation | Flame

Benchmark/LES Modeling Mixing Models rate and scalar Wrinkling

Modeling Issues variance modeling | Models

Lifted C2H4 Jet Yang et al 2013; Kaul et al. 2013;

Flame in Hot Knudsen et al 2012 Knudsen et al 2012

Coflow

Hz/Air Transverse | Kollaetal 2012 Leeetal. 2012

Jet Flame

Hz/Air Premixed Richardson et al. Hawkes et al

Jet Flame in Shear 2010; Richardson 2012;

Turbulence, and Chen, 2012 Chatakonda et al

. 20123;

g—l + Premixed Jet Chatakonda et al.
ame 2012b

Hz/Air Premixed Raman et al. Raman et al. 2013

Flame Boundary 2013

Layer Flashback

H2/Air and LES/PDF Yang et al

C2H4/air Non- 2013; ODT Punati et

premixed Slot Jet al 2011; LEM/ISAT

Flame Extinction & Sen etal 2010.

Re-ignition

Table 1. DNS-Based Model Development

9.1.2.1

Scientific Objectives for 2017

We propose to perform DNS in laboratory configurations at elevated pressure to enable
exploration of chemistry-turbulence interactions - autoignition in stratified mixtures and
with mixed mode combustion (e.g., partially premixed flames propagating in autoignitive
mixtures) - relevant to fuel efficient, low emissions advanced low temperature engine
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concepts burning alternative bio-derived fuels. The two main engine concepts can be
broadly categorized as homogeneous charge compression ignition (HCCI) and low-
temperature diesel combustion (LTC) engines.

Several classes of target DNS problems will be addressed in 2017:

iy

2)

3)

Two canonical DNS configurations for Homogeneous Charge Compression Ignition
(HCCI) and Spark-Assisted Compression Ignition (SACI) are proposed. The
configurations correspond to a three-dimensional volume of lean fuel-air mixture
undergoing isentropic compression and expansion to mimic the mixing and
combustion processes in the bulk gases in an engine cylinder during portions of the
compression and expansion strokes. We plan to study both HCCI and SACI in three-
dimensional DNS in a canonical configuration with isotropic turbulence and
temperature stratification with pure ethanol, and ethanol with a cetane improver,
EHN. The balance of flame propagation and spontaneous autoignition will be
studied along with their influence on ignition timing and pressure rise rate.
Moreover, the effectiveness of the cetane additive on modulating the reactivity of
alcohol fuels, e.g. ethanol, and on NO generation will be quantified.

Direct numerical simulations of lifted dimethyl ether flames will be performed in a
three-dimensional configuration at elevated pressure (40 atm) with a diluted
dimethyl ether impulsive fuel jet issuing into quiescent air heated to between 900-
1200K. We will perform a parametric study by varying the co-flow temperature and
diluent. This will allow better understanding of the effect of turbulent mixing
processes in an impulsive jet that establish the partially-premixed mixture
conditions for multi-stage autoignition, and the role of stable low-temperature auto-
ignition intermediate species in stabilizing a lifted diesel jet flame. The DNS will be
performed with LMC, an adaptive mesh low-Mach code developed at LBNL.

The third target problem is a planar or spherically expanding turbulent premixed
flame brush at moderate pressures (greater than 5-10 atm), providing theoretical
insight into premixed flame front instabilities under low-temperature, high-
pressure conditions typical for transportation environments. At these conditions
there exist strong ‘turbulence-chemistry’ interaction due to the overlap of finite-rate
ignition chemistry and local mixing rates, and added complexities associated with
thermal/composition stratification that affect the turbulent burning velocity. In both
SACI and HCCI with high levels of thermal stratification, understanding and
predicting the turbulent premixed burning velocity at high pressure is important.
Moreover, the prevalence of intrinsic flame instabilities at high pressure
complicates the ability to provide combustion control. At high pressure,
experimental differentiation of the aforementioned factors on premixed flame
propagation still remains extremely difficult. Carefully designed direct numerical
simulations will enable detailed comparisons of flame instabilities and flame-
turbulence interaction with experimental data performed in spherically expanding
high-pressure flames. We propose to study the interaction of turbulence with two
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types of intrinsic premixed flame instabilities: diffusive-thermal pulsating instability
and Darrieus-Landau (DL) hydrodynamic instability.

9.1.3 Computational Strategies (now and in 2017)

9.1.3.1 Approach

Direct numerical simulations

Combustion, as it occurs in most practical devices including internal combustion engines, is
a highly coupled multi-physics problem spanning a broad range of length and time scales
and involving a large number of degrees of freedom. Invariably, the flow is turbulent with a
large Reynolds number and the environments are extreme with rapid compression rates
and elevated pressures of up to 60 atmospheres involving chemical reactions between
hundreds of chemical species. The broad requirements of maximizing fuel efficiency and
minimizing emissions under a wide range of operating conditions pose many challenges for
the combustion process, requiring novel design concepts and fuels. The design practice in
industry typically involves simulating the processes at the largest scales along with a low-
order modeling of the coupled physics at the finer scales. This calls on accumulated
expertise and can be reliable for conventional fuels, but alternative fuels require fresh
consideration and characterization.

Our methodology, first principles-based direct numerical simulations, instead simulates the
physics at the finest continuum scales to study the targeted phenomena piecemeal in each
canonical configuration. Each of the constitutive physical process: fluid dynamics,
thermodynamics, finite rate chemical kinetics and molecular transport are fully represented
mathematically at the continuum scale level and the governing equations are solved using
high-order accurate numerical methods. While such simulations are computationally
expensive, they provide information rich in detail at a level of fidelity sometimes
inaccessible even to experiments. The benchmark data, while providing fundamental
insight, are invaluable in developing and assessing models of engineering utility and
improving their predictive capability. Leadership class computing resources are uniquely
positioned to enable simulations of this scale and have a potentially high impact in driving
the next generation of advanced combustion technologies using alternative fuels.

9.1.3.2 Codes and Algorithms

The aforementioned simulations will be performed using two research codes; S3D,
developed at Sandia National Labs (SNL) and LMC, developed at Lawrence Berkeley
National Labs (LBNL). S3D, described in detail in ref. [Chen+09], is a compressible fluid
flow solver uniquely tailored for performing gas-phase reacting flow simulations. It solves
the conservation equations for mass, momentum, energy and species concentrations in
their finite difference form on a fixed mesh rectangular Cartesian domain. An explicit
eighth-order accurate central difference scheme with a nine-point stencil is used for spatial
derivatives along with a tenth-order filter for damping spurious high-frequency noise
[Kennedy+94]. The time integration is performed using an explicit fourth-order accurate
low-storage six-stage Runge-Kutta (RK) scheme [Kennedy+00]. Detailed evaluation of
thermodynamic quantities, molecular transport coefficients and chemical kinetic reaction
rates is incorporated in S3D by interfacing with modified versions of Sandia’s CHEMKIN
suite of routines. Characteristic boundary condition treatment is applied at the domain
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boundaries with special attention being paid to chemical reactions and transverse variation
of flow properties on the boundaries [Poinsot+92, Sutherland+03, Yoo+05].

S3D is written primarily in Fortran 90 and fully parallelized using the Message Passing
Interface (MPI) programming environment. The computational domain is represented using
a fixed regular grid and a static MPI domain decomposition is used whereby each MPI rank
maps to a corresponding portion in the rectangular Cartesian domain. This results in all MPI
ranks handling the same number of grid points yielding a near-ideal computational load
balance. Owing to the explicit numerics the solution loop in S3D involves no all-to-all
communication with virtually all communication being between nearest neighbors.
Furthermore, the communication is made partially asynchronous with computation to hide
some of its cost, resulting in excellent parallel performance. S3D has demonstrated parallel
scalability on petascale machines at both OLCF (jaguarpf-XT5) and NERSC (Hopper-XE6)
with near optimal weak scaling up to 150,000 cores on both machines, see Figure 3 below.
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Cost in |Ls per gridpoint per timestep
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Figure 3. Weak scaling of S3D on Cray XT5 and XE6 machines.

While S3D is attractive from an algorithmic simplicity and parallel scalability standpoint,
the explicit time integration dictates that the grid sizes and time steps in S3D simulations be
small enough to resolve the smallest length and time scales of the problem. For this reason
S3D is ideally suited for problems in which the constitutive physical processes, the fluid
dynamics and chemical reactions for example, have time and length scales that are
comparable. When there are large disparities in length scales between the flames and
turbulence, for example, in some combustion regimes at high pressure, more suitable
approaches such as adaptive mesh refinement (AMR) should be considered.
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The second computational tool we will use for this project is the low Mach number adaptive
mesh refinement code, LMC, developed at LBNL [Day+00]. Similar to S3D, the LMC code
integrates the multi-species Navier-Stokes equations with models for detailed chemical
kinetics and transport. However, LMC is based on a low Mach number formulation that
exploits the natural separation of scales between the fluid velocity and acoustic wave
propagation in this low speed problem, removing acoustics and the need to evolve them,
from the analytic description of the system entirely. Bulk compressibility effects due to
chemical reaction and thermal conduction, remain in the description but appear as a global
constraint on the evolution of the velocity field. A predictor-corrector procedure is used to
integrate the low Mach number model. The intermediate velocity field that results is then
decomposed using a density-weighted projection to extract the component satisfying the
global constraint. The projection step involves the solution of a self-adjoint, variable
coefficient elliptic equation. For the species conservation equations a splitting method is
used that incorporates a stiff ODE integration technique to handle the disparate time scales
associated with detailed kinetics. Time evolution of the overall fractional step scheme is
constrained by the fluid velocity rather than the acoustic wave speed, increasing the
maximum time step by one to two orders of magnitude for many low Mach number
combustion applications.

The LMC code also includes block-structured adaptive mesh refinement. In this approach,
regions to be refined are organized into rectangular patches, with several hundred to
several thousand gridpoints per patch. One is thus able to use rectangular grid methods
described above to advance the solution in time; furthermore, the overhead in managing the
irregular data structures is amortized over relatively large amounts of floating-point work.
Error estimation and refinement criteria are used to dynamically adjust the refinement as
the computation proceeds.

The adaptive projection framework uses a hybrid parallelization strategy based on MPI for
coarse-grained parallelism and OpenMP for fine-grained parallelism. The code is written in
a software framework, BoxLib that handles data distribution and communication for
distributing work to computational nodes. OpenMP is used within the physics modules to
distribute the work among the different cores within a node. A dynamic load balancing
algorithm accommodates the changing workload as regions of refinement are created and
destroyed during the computation. For combustion applications the load-balancing problem
is complicated by the heterogeneous workloads associated with chemical kinetics. The
hybrid implementation has been shown to scale efficiently to more than 50K cores. For
problems in which the low Mach number approximation is valid, the combination of
adaptive mesh refinement with a low Mach number formulation can result in savings of as
much as two orders of magnitude in computational cost compared to a non-adaptive
compressible formulation.

9.1.4 HPC Resources Used Today

9.1.4.1 Computational Hours

We used 73.4 million hours at NERSC in 2013, much of it coming from early user time on
Edison.
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9.1.4.2 Parallelism

The number of cores typically used per simulation is determined by the resolution and size
requirements of the investigated target problems. These have been in the range of 20-100K
cores.

S3D has demonstrated parallel scalability on petascale machines at both OLCF (jaguarpf-
XT5) and NERSC (Hopper-XE6) with near optimal weak scaling up to 150,000 cores on both
machines.

Chances of node failure are greater at larger core counts and the wall time of our
simulations are long (12/24hours). Therefore, we aim to run at slightly smaller core counts
for longer intervals.

In addition we perform periodic I/0 collecting the state for statistics accumulation and none
of the 1/0 strategies work well at larger core counts.

We do not use high throughput computing.

Our problems are governed by weak scaling. Our need for capability computing is due to
the large number of grid points required to resolve high pressure, high Reynolds number
(large dynamic range of flow and flame scales) parameter space of engines and gas turbines
with detailed chemistry (10-100 transported species continuity equations per grid). The
need for leadership resources is due to the large number of grid points required to resolve
high pressure, high Reynolds number (large dynamic range of flow and flame scales)
parameter space of engines and gas turbines with detailed chemistry (10-100 transported
species continuity equations per grid).

9.1.4.3 Scratch Data

During the simulations restart and checkpoint files are typically stored which are used to
monitor the run, to perform data analysis and visualization a posteriori, resulting in
temporary disk space requirements of ~300 TB.

9.1.4.4 Shared Data

Our project(s) has a permanent space (mp241) used to store and share data with
collaborating members of mp241 or different repositories. The fact that the project
directory is not a Lustre file system and it is GPFS limits the 10 performance, and hence we
don’t use it actively for analysis and post processing.

9.1.4.5 Archival Data Storage
The project has 828 TB of data stored in HPSS in 2013.

9.1.5 HPC Requirements in 2017

9.1.5.1 Computational Hours Needed

The computational estimate for the target problems we aim to simulate in CY 2017 is 500 M
hours.

We expect that we will probably use OLCF Titan through INCITE and/or ALCC awards.
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We propose to perform DNS in canonical configurations to enable exploration of chemistry-
turbulence interactions - autoignition in stratified mixtures and with mixed mode
combustion (e.g. partially premixed flames propagating in autoignitive mixtures) - relevant
to fuel efficient, low emissions advanced low temperature engine concepts burning
alternative bio-derived fuels. The need for an increase in capability computing cycles is
mainly due to our goal of achieving DNS in relevant aero-thermo-chemical regimes of
internal combustion and gas turbine engines. That is, to attain higher Reynolds number
(wider dynamic range of inertial to viscous flow scales), higher pressure (30-60 atm), and
more complex fuels (bio-fuels with 50-100 transported species) requires a significantly
larger number of grid points. Our domain sizes will necessarily increase to accommodate
the integral scale of engines and we will have to simulate longer, i.e. larger number of time
steps, to capture the relevant ignition phenomena and to attain converged statistics
associated with intermittent combustion events. In 2013, our larger grid counts are of the
order of 6-7 billion. We expect by 2017 to increase this by an order of magnitude or more.
DNS of turbulent combustion is limited by weak scaling performance.

9.1.5.2 Parallelism

We estimate to perform a range of simulations in CY 2017. The number of cores needed is
in the range of 100-400K. The maximum we could probably use is about 200K cores in
2013, possibly 400K in 2017 (don’t know haven'’t tested this).

Because we aim to perform multiple simulations for a number of target problems to
complete a parametric study, it is typical that we may need to run 2-3 jobs concurrently.
We will also be running two executables of S3D: S3D-DNS and S3D-LES lockstep, and hence,
required several executables to share and pass information through memory at every sub-
stage of our explicit RK method. We currently use MPI-communicator to facilitate this
communication, and may explore other staging methods like ADIOS for this purpose. This
works on Titan; however, our experience shows machines like Edison cannot support
multiple executables on the same node. I can also anticipate additional concurrent
executables if we include topological region segmentation running concurrently with the
solver.

We do not use high throughput computing.

9.1.5.3 1/0

The estimated 1/0 size per run is 50-300 TB and the total size of data from the planned
simulations may include about 400-800 TB of raw data. The effective I/0 bandwidth is 15
GB/s, which corresponds to 5% of the total run time.

9.1.5.4 Scratch Data

The target problems planned for 2017 will have temporary disk space requirements 50-150
TB. We aim to perform a suite of canonical target problems that are aimed at elucidating
mixing, ignition and combustion characteristics of low temperature engines burning
alternative fuels at high pressures. These calculations impose stringent resolution
requirements and involve larger chemical models that require the transport of more species
than our currently performed runs, thus increasing our scratch space requirements.
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9.1.5.5 Shared Data

As more computational time becomes available we will be able to tackle larger problems
both in terms of Reynolds numbers and chemistry complexity. As the size of problems
increases the range of scales of scales increases and this is reflected also in our data
footprint at all stages of the simulation, (scratch, project, HPSS)

We typically need to share DNS data that is generated with other users in repo mp241 for
analysis and visualization purposes. This may include about 100 terabytes of raw data.
There will be several 2D and 3D production runs and parametric studies that our
collaborators will need access to for post processing.

9.1.5.6 Archival Data Storage

The estimate for the DNS data generated is about 800 terabytes of raw data essential for
analyses and visualization. Our 2013 usage was 828 TB and we estimate needing on the
order of 10X, or 8.3 PBin 2017.

We store the minimum information so that we can recover the state and collect statistics
but as the targeted problem sizes grow so that in every step of the simulations the storage
requirements increase. We are also investigating data reduction and compression
strategies to reduce the amount of data we store.

9.1.5.7 Memory Required

S3D problem sizes are not restricted by the available memory per node but rather by the
processing speed and by the width of the stencils used for the derivative computations. We
are memory bandwidth bound typically in our computations.

9.1.5.8 Emerging Technologies and Programming Models

S3D is being optimized for heterogeneous architectures including CPU/GPU and MIC
systems. We have completed one refactorization of the code already in order to be able to
run on hybrid CPU/GPU architectures (Titan) using OpenACC directives. We are actively
seeking alternative strategies with Intel and Cray. We also have an ongoing effort with
ExaCT codesign to explore the Legion dynamic runtime and Domain Specific Languages
(DSLs) for taking advantage of the increasingly parallel and heterogeneous architectures
available for high performance computing. Legion/S3D is a domain specific language that
allows application developers to express computations in a high-level language while the
details of extracting parallelism and mapping the computation onto a target architecture,
such as a GPU, are left to the DSL compiler and dynamic runtime. Legion/S3D is able to
identify fine-grain task and data parallelism through task dependency graphs, autotuning,
and dynamic scheduling of these tasks. We hope to have comparisons of this new code with
the OpenACC S3D by end of 2013.

Hybrid implementations are becoming more critical as processors continue to increase in
number of cores and/or threads. It is especially important to have an optimized thread
parallel implementation that will continue to scale as threads/cores increase in future
architectures. SNL and LBNL have an ongoing effort with Intel Corporation to optimize the
thread parallelism and vectorization of their combustion codes. While LMC makes efficient
use of the MPI/OpenMP* programming environment, the current production code base of
S3D uses only MPI. A hybrid parallelization of S3D utilizing both MPI and OpenMP* is
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currently in progress. From September 2012 to December 2012 engineers from Intel,
Sandia, and NREL (National Renewable Energy Laboratory) optimized S3D to gain a 1.5x
speedup on a platform based on Intel® Xeon® processor E5-2600 product family by
employing optimizations targeted at vectorization (intra-register parallelization) and
thread parallelism. Sandia, Intel, and NREL are continuing efforts in 2013 and 2014 to find
ways to further improve concurrency to enable even more thread parallel optimizations on
Intel MIC architectures. These efforts are particularly directed towards making optimal use
of Edison and future Intel machines. Any assistance from NERSC towards this goal would be
beneficial. The current team is led by Antonio Valles of Intel, Weiqun Zhang from LBNL, H.
Kolla and J. Chen from Sandia and R. Grout from NREL.

9.1.5.9 Software Applications and Tools
We need MATLAB, ParaView, Vislt, VISUS from Pascucci, ADIOS, HDF5.

9.1.5.10 HPC Services

We typically need account support and consulting support to help compile our code.
Training and support services, and possibly assistance in setting up a computational
combustion gateway/portal for community access to simulation data and software tools
archived at NERSC.

9.1.5.11 Time to Solution and Throughput

Data storage at every step: scratch, project, HPSS storage and 1/0 bandwidth and user and
project quotas. We will require large compute allocations and a queuing system that is
favorable towards large runs requiring long times.

9.1.5.12 Data Intensive Needs

As the problem sizes increase, data transfer between scratch and HPSS and project and
scratch will be a bottleneck and it will be an important part of all steps of the workflow to
minimize any potential bottlenecks.

We are satisfied with NERSC's HPSS system. The separate queue for transfer of data to the
archival storage system is a very good feature of NERSC.

We do not have a data management plan.

9.1.5.13 What Else?

Our experience has been that queue policies at NERSC currently seem to favor very small
users by allowing flooding of the queues with a large number (~50) small jobs concurrently
which prevents large jobs from running. A 20K core job on Edison recently has been in
queue for 2-3 weeks before it starts running.

The HPC features that are most important to us include reliability, availability, job turn
around, performance.
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9.1.5.14 Requirements Summary

Used at NERSC [Needed at NERSC

in 2013 in 2017
Computational Hours 73.4 M 500 M
Typical number of cores* used for production 20-100K 100-400K
runs
Maximum number of cores* that can be used 150 K 400K
for production runs
Data read and written per run 50-100TB 50-200TB
Maximum I/0 bandwidth 15GB/sec 15 GB/sec
Percent of runtime for I/0 5% 5%
Scratch File System space 100TB 300 TB
Shared filesystem space 8.5 TB 100 TB
Archival data 828 TB 8,300 TB

* “Conventional cores”
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9.2 Rational Catalyst Design for Energy Production

Principal Investigator: Andreas Heyden, University of South Carolina
Worksheet Author: Muhammad Faheem, University of South Carolina
NERSC Repository: m1065

9.2.1 Project Description

9.2.1.1 Overview and Context

Our research primarily focuses on developing a molecular understanding of heterogeneous
catalysis at solid-liquid interfaces to elucidate the specific role of a liquid environment on
the activity and selectivity of transition-metal catalysts. Despite significant advances in
computer algorithms and increasing availability of computational resources, molecular
simulations of such large and complex systems remain challenging. Our general approach is
to develop multi-scale, mixed-resolution modeling techniques that combine the accuracy of
ab initio quantum mechanical (QM) methods with the efficiency of classical molecular
dynamics (MD) and continuum models to provide a reliable energetic description of the
complex system at a fraction of the cost. We have previously demonstrated the effectiveness
of an implicit solvation scheme (iSMS) based on integration of planewave density functional
theory (DFT) calculations with continuum solvation models for rapid computation of
reaction free energies of processes occurring at solid-liquid interfaces. Recently, we have
developed and validated an explicit solvation scheme (eSMS) based on integration of
planewave DFT calculations with classical MD simulations through free energy perturbation
(FEP) methods. Our plan is to apply these novel computational techniques to rationalize the
design of heterogeneous catalysts with superior activity, selectivity, and stability for various
biomass conversion processes to fuels and value-added chemicals.

Our experience has shown that the computational cost of simulating a reaction with iSMS is
2-3 times that of standard planewave DFT calculations, whereas using eSMS is about 2
orders of magnitude more expensive. Similar trends have been observed regarding data
generated and stored for application of these techniques. With the current generation of
computational resources, iSMS can be routinely applied for solvent screening and to study
complete reaction mechanisms. Application of eSMS, on the other hand, is currently
affordable only for a small subset of the overall reaction network.

9.2.1.2 Scientific Objectives for 2017

We envision a 4-step procedure for simulating heterogeneously catalyzed reactions in
liquid environments where (1) standard planewave DFT calculations are performed for the
entire reaction mechanism, (2) iSMS serves as a pre-screening tool for solvents, process
conditions, and elementary steps that are most sensitive to the presence of a liquid
environment, (3) eSMS is used for refinement of reaction free energies and free energy
barriers for previously identified elementary steps and for generation of meaningful
solvation structures, and (4) ab initio QM calculations for the solvated model are performed
for rate-controlling steps (i.e., our procedure is similar to step 3; however, some water
molecules are now treated at the QM level). Our rationale for this strategy is to successively
improve the description of the effect of a complex liquid environment on reaction
equilibrium and kinetics in conjunction with microkinetic modeling to balance the use of
expensive computational techniques with affordability. With usefulness of iSMS and eSMS
demonstrated for simulating reactions at solid-liquid interfaces, and with computational
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power expected to increase by an order of magnitude in the next 5 years, both techniques
should get a wider user base and help create a scientific basis for the rational catalyst
design of liquid phase processes.

9.2.2 Computational Strategies (now and in 2017)

9.2.2.1 Approach

Computational tasks associated with our project can be divided into 3 main categories:

1. DFT calculations with planewave and Gaussian-type orbital (GTO) basis: These
calculations currently account for almost 100% of our usage of NERSC resources and
are performed with commercially available DFT codes (TURBOMOLE, VASP).

2. MD simulations: These calculations are performed using the DLPOLY program and
currently account for less than 1% of our usage of NERSC resources. This is mainly
because our focus up to this point has been modification and integration of source codes
of various programs to better communicate with each other for our QM/MM
methodologies. With these developments now complete and rigorously tested, MD
simulations may account for about 10% of our usage of NERSC resources.

3. High-throughput calculations: Our methodologies, especially eSMS, require a large
number of relatively small but completely independent tasks to be performed, and thus
are excellent candidates for bundling and high-throughput computing. We have
developed FORTRAN programs and BASH scripts for interfacing of various DFT and MD
codes, automatic input generation and output processing. These codes have been
extensively tested and are currently in use for production runs at Stampede (an XSEDE
resource). Recently, we have started moving some of these calculations to NERSC
resources.

9.2.2.2 Codes and Algorithms

VASP: Standard planewave DFT code (270% of our usage on NERSC). Most relevant
algorithms include Fast Fourier Transform and matrix diagonalization. We have performed
minor modifications in the source code to enable better communication with our QM /MM
methodologies.

TURBOMOLE: Commercially available GTO-based quantum chemistry code (*30% of our
usage on NERSC). Most relevant algorithm for our project is the Periodic Electrostatic
Embedded Cluster method (PEECM). Scripts included with TURBOMOLE have been
modified to serve as drivers for geometry optimization and free energy perturbation in our
QM/MM methodologies.

DLPOLY: Classical MD code (<1% of our usage on NERSC). This share is expected to grow
considerably with more frequent application of the eSMS technique. The source code has
been locally modified to include new force field functional forms and to interface with the
driver scripts from TURBOMOLE.

9.2.3 HPC Resources Used Today

9.2.3.1 Computational Hours
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Period Resource Core-Hours used (million)
January 2013 - NERSC .
December 2013 (Carver/Hopper) 3.5 (allocation)
January 2013 - . N .
December 2013 NERSC (Edison) =1.0 (estimated)
October 2012 - XSEDE (various 30
September 2013 resources) '
October 2012 - . .
September 2013 PNNL (Chinook) 3.0 (estimated)
January 2013 - >1.0 (estimated, no formal
December 2013 USC (local resources) accounting)
9.2.3.2 Parallelism
VASP 16-32 (Carver); 24-48 (Hopper/Edison)
TURBOMOLE 8-32 (Carver); 24-48 (Hopper); 24 (Edison)
8-32 (Carver). We note that the use of DLPOLY in eSMS constitutes
DLPOLY an embarrassingly parallel problem, and we prefer to run an
ensemble of tasks with small core counts.
VASP 64 (Carver); 120 (Hopper)
TURBOMOLE 64 (Carver); 96 (Hopper)
DLPOLY 32 (Carver)

Note: We have listed the maximum number of cores that our group has used. The code(s)
may be utilizable on even larger core counts.

Our choice of the typical number of cores for both TURBOMOLE and VASP is based on
scaling tests for a typical model system in our project and intended to strike a balance
between performance gain, time-to-solution, and waiting time in queue. Currently DLPOLY
accounts for a very small fraction of our usage, and is essentially always run in conjunction
with TURBOMOLE: we simply distribute an ensemble of DLPOLY tasks on the same cores as
used by TURBOMOLE.

We have extensively used such job ensembles on Stampede (an XSEDE resource), typically
with 8-16 tasks per job (maximum used=50). We are currently in the process of moving
similar calculations to NERSC resources, and expect to use a similar setup.

In general, strong scaling is preferable for our project. The bottleneck in our QM/MM
methodology comes from the QM calculations that do not scale well on large core counts.
MM calculations in our project can be split in as many independent parallel streams as
practically possible. It would be highly desirable to reduce the time-to-solution for QM
calculations using large core-counts and further increase the number of parallel MM
threads.
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9.2.3.3 Scratch Data
We typically use less than 100 GB for temporary disk space.

9.2.3.4 Shared Data
We do not have a project directory at NERSC.

9.2.3.5 Archival Data Storage
Not Applicable

9.2.4 HPC Requirementsin 2017

9.2.4.1 Computational Hours Needed

We will need more than 20 million hours at NERSC in 2017. We expect to receive yearly
allocations on various XSEDE resources. The primary factor driving the need for more
hours is the need to do a large number of computations on more complex systems. Within
our fields of study (catalysis and materials/surface science), complexity and accuracy of
DFT are huge issues that dramatically limit our ability to understand and design new
materials/catalysts for, e.g., future bio-refineries. At the same time, the MGI initiative
demands of us that we start designing more materials on a computer. While new/improved
methods and codes will be essential, our area of science still needs for the foreseeable
future the help of the computing revolution that doubles CPU power per year.

9.2.4.2 Parallelism

We do not expect a significant change on a per-task basis, either in terms of the maximum
that could be used or the concurrency we will actually use in our runs. We typically have
about 20 jobs running concurrently for each scientist in the group.

We have experience using up to 50 tasks per job. Considering the specific requirements and
limitations of our method, this number may be as large as a few hundred.

9.243 1/0

QM calculations =1 GB per job

MM calculations ~10-50 GB per job

Hybrid QM /MM calculations | 1-2 TB per job

Note: The numbers listed here are from our recent jobs on Stampede. We do not expect

them to change significantly in future.

QM calculations ~1 GB total data, only written at the end.

MM calculations =100 MB/minute/job write. No read.

Hybrid QM /MM calculations | *2 GB/minute/job (total for all simultaneous tasks).
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Currently read/write ratio is =2-3. In planned
modifications to our code, we envision it to be almost
exclusively read.

We would need 1/0 to be less than about 10% (for hybrid QM /MM jobs) to be successful.

9.2.4.4 Scratch Data

In 2017 we will need 50-100 TB of "scratch" disk space. The growth relative to today is
again due to the need to do a larger number of computations.

9.2.4.5 Shared Data
Not Applicable

9.2.4.6 Archival Data Storage
Not Applicable

9.2.4.7 Memory Required

Per-node memory available on current generation of NERSC systems is sufficient for our
jobs for the foreseeable future.

9.2.4.8 Emerging Technologies and Programming Models
Not Applicable

We are not working on modifying any code for accelerator-based computing. However, if
GPU versions are available (e.g., there have been multiple efforts for VASP), we can quickly
switch.

9.2.4.9 Software Applications and Tools
Libraries: MKL (or equivalent); FFTW

COMPILERS: FORTRAN; C

9.2.4.10 HPC Services

General problem resolution.

9.2.4.11 Time to Solution and Throughput

Availability of longer queues: geometry optimizations in our project are very expensive, and
we need multiple submissions to a 48-hour queue to achieve convergence. The ability to run
more simultaneous jobs than currently allowed in the longer queues would be highly
beneficial for our project.

9.2.4.12 Data Intensive Needs

No special needs.
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All large files produced in our project are required only for temporary storage, and if
needed again, most of them can be generated quickly. With purge policies of 6-8 weeks on
SCRATCH, moving such files to archival storage is not required. Our data management plan
is based on local storage of all input but only important output files. We periodically backup
our local storage system (2 copies). In addition, after completion of each subtask of the
project, we create a DVD of all relevant data.

9.2.4.13 Requirements Summary

Used at NERSC Needed at NERSC
in 2013 in 2017

Computational Hours 43 M 20M
Typical number of cores* used for 24 24
production runs
Maximum number of cores* that can be 120 120
used for production runs
Data read and written per run Max 2 TB Max 10 TB

Maximum I/0 bandwidth

2 GB/min/job

2 GB/min/job

Percent of runtime for 1/0 10% 10%
Scratch File System space 2TB 100 TB
Shared filesystem space N/A N/A
Archival data N/A N/A
Memory per node 64 GB 64 GB
Aggregate memory TB TB

* “Conventional” cores

9.2.5 Additional Storage and I/O Remarks

During MM simulations, we generate a single trajectory file (x10-50 GB) per job. Before
starting hybrid QM/MM calculations, we split this file into multiple parts (by re-
reading/writing the entire file). Each of these parts then serves as input to an independent
stream of eSMS calculations (typically using 2-4 cores per stream).

For example, considering one node of Hopper, we might split the original trajectory file (say
48 GB) into 12 parts (4 GB each), and then use 12 parallel threads (2 cores each). Within
each thread, only the first core handles file reading/writing (serial 1/0). However, there are
12 such file-handling cores per node (essentially distributed 1/0). The rationale for splitting
the original file is that these calculations must be repeated at each optimization step (x15-
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20 steps are usually achieved in a 48-hour queue; hence a total of 1-2 TB of data
read/written per job). Within each optimization step, most of the time is spent on QM
calculations with #1 GB data written only at the end of each step. A profile of /0 bandwidth
usage of such a job would show almost zero disc activity for the most part, with periodic
peaks of large disc activity (each spanning a few minutes).
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9.3 Condensed Phase Studies with CP2K

Principal Investigator: Christopher ]J. Mundy (Pacific Northwest National Laboratory)
Case Study Co-Author: Sotiris Xantheas (Pacific Northwest National Laboratory)
NERSC Repository: m452

9.3.1 Project Description

9.3.1.1 Overview and Context

Our research centers on the use of quantum density functional theory (DFT) and
understanding aqueous systems in the condensed phase. DFT, in principle, can explain the
detailed molecular structure of solutes in complex heterogeneous environments. We use
this information in conjunction with experiment and theory to elucidate mechanisms of ion
transport to interfaces. Our studies include, but are not limited to, complex chemical
reactions at interfaces, and bulk and interfacial solvation of simple and complex ions. To
this end, we have performed some of the largest simulations to date explaining the complex
solvation of simple and complex ions in the vicinity of the air-water interface. These studies
have pointed to the shortcomings of empirical based models and point to the importance of
how a precise determining of local structure about complex solutes can lead to emergent
phenomena, such as self-assembly, at larger scales.

9.3.1.2 Scientific Objectives for 2017

At present, we are limited to the simulation of defects in the dilute limit. Our goal for the
future will be to study concentrated electrolytes in both bulk and interfacial geometries at a
suitable scale to examine the potential of mean force between objects immersed as a
function of ionic strength, pH, and electrolyte composition.

9.3.2 Computational Strategies (now and in 2017)

9.3.2.1 Approach

We use electronic structure based potentials of interaction in conjunction with statistical
mechanical methods to understand the free energetics of interactions between solutes or
complex objects (comprised as an assemble of solutes) as a function of the composition of
the solvent.

9.3.2.2 Codes and Algorithms

We use CP2K (www.cp2k.sourceforge.net). CP2k performs atomistic and molecular
simulations of solid state, liquid, molecular and biological systems. It provides a general
framework for different methods such as, e.g., density functional theory (DFT) using a
mixed Gaussian and plane waves approach (GPW), and classical pair and many-body
potentials.

We use computational algorithms based in statistical mechanics (e.g., umbrella sampling).
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9.3.3 HPC Resources Used Today

9.3.3.1 Computational Hours
We used 6.4 million hours at NERSC in 2013.

9.3.3.2 Parallelism

We typically use between 1,000-2,000 cores per simulation. The maximum is probably
around 64,000. Our production runs are application dependent. Typically runs of 1,000-
10,000 cores are sufficient for the science we are performing.

Both strong scaling and weak scaling are important to us. We are currently doing the
biggest aqueous systems (350 water molecules) for the longest simulation times. What
system size we study is tightly coupled to both the level of theory that we utilize and the
kind of statistical sampling.

9.3.3.3 Scratch Data

Current scratch space is sufficient for our runs.

9.3.3.4 Shared Data

We use the project directory m452, which currently has about 2.7 TB stored in it. We use
this to share data between our collaborators and co-workers.

9.3.3.5 Archival Data Storage
We back up regularly and have 27 TB stored in 2013.

9.3.4 HPC Requirements in 2017

9.3.4.1 Computational Hours Needed

We anticipate we will need about 18 million CPU hours. The reason is that we have more
sophisticated quantum mechanical algorithms (e.g. better accuracy) in conjunction with
statistical sampling.

9.3.4.2 Parallelism

We anticipate using about 10,000 cores per run; maximum, 100,000 cores. Up to 20 jobs
utilizing 10,000 cores might be run concurrently for the statistical mechanical sampling
such as umbrella sampling.

9.3.43 1/0
CP2K is not an I/0 limited code.
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9.3.4.4 Scratch Data

[ do not anticipate needing a significant upgrade of scratch space.

9.3.4.5 Shared Data

We estimate we will need 5 TB of shared storage space in 2017.

9.3.4.6 Archival Data Storage

We estimate needing to store 10 terabytes/year, which on top of the 27 TB we have stored
in 2013, would give us about 70 TB in 2017.

9.3.4.7 Memory Required
16 GB/node is required.

9.3.4.8 Emerging Technologies and Programming Models

CP2K is GPU ready and we have worked directly with vendors (e.g., NVidia) to optimize our
code.

9.3.4.9 Software Applications and Tools

We rely on gfortran to build our codes.

9.3.4.10 HPC Services

We do not anticipate a need for special services. Current services seem excellent.

9.3.4.11 Time to Solution and Throughput

No special needs here.

9.3.4.12 Data Intensive Needs
We are very satisfied with NERSC HPSS.
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9.3.4.13 Requirements Summary

Used at NERSC Needed at NERSC

in2013 in 2017
Computational Hours 6.4 M 18 M
Typical number of cores* used for production 2,000 10,000
runs
Maximum number of cores* that can be used 64,000 100,000
for production runs
Archival storage 27 TB 70 TB
Shared project data space 2.7TB 5TB

* “Conventional” cores

9.3.4.14 Additional Storage and 1/0 Remarks
CP2K applications are not I/0 limited.
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9.4 Accurate Scalable Calculations for the Ground and Excited
States of Complex Molecular Assemblies

Principal Investigator: Sotiris S. Xantheas (Pacific Northwest National Laboratory)
Worksheet Authors: Additional input has been obtained from Drs. Edoardo Apra and Karol
Kowalski (EMSL, PNNL)

NERSC Repository: m1513

9.4.1 Project Description

9.4.1.1 Overview and Context

The objective of this research effort aims toward developing a comprehensive, molecular-
level understanding of the collective phenomena associated with intermolecular
interactions occurring in guest/host molecular systems and aqueous environments. The
motivation of the present work stems from the desire to establish the key elements that
describe the structural and associated spectral features of simple ions in a variety of
hydrogen bonded environments such as bulk water, aqueous interfaces and aqueous
hydrates.

Simple model systems including small molecules of complex electronic structure as well as
aqueous clusters offer a starting point in this process by providing the testbed for validating
new approaches for analyzing the electronic structure as well as the nature of interactions
and the magnitude of collective phenomena at the molecular level. For instance, high level
first-principles electronic structure calculations of the structures, energetics, and
vibrational spectra of aqueous neutral and ionic clusters provide useful information needed
to assess the accuracy of reduced representations of intermolecular interactions, such as
classical potentials used to model the macroscopic structural and thermodynamic
properties of those systems. The database of accurate cluster structures, binding energies,
and vibrational spectra can, furthermore, aid in the development of new density functionals,
which are appropriate for studying the underlying interactions.

Of particular importance is the understanding of the factors controlling the affinity and
selectivity of several molecular hosts to a variety of guest molecules with a particular
emphasis on energy applications. The molecular level details of the various prototype
guest/host systems, as probed experimentally via spectroscopic techniques and obtained
theoretically by various levels of electronic structure theory, play an important role in the
assessment of the accuracy of the latter. This information is subsequently used to model the
guest/host interactions in complex molecular hosts such as hydrate lattices.

Representative applications include the modeling of liquid water and ice, aqueous ion
solvation and applications, including the structure of clathrate hydrates and the interaction
of host molecules with those guest networks. The detailed molecular-scale account of
aqueous systems provided by these studies are relevant to Department of Energy programs
in contaminant fate and transport and waste processing as well as hydrogen storage.
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9.4.1.2 Scientific Objectives for 2017

The project aims to

1) Obtain high level benchmark results for the interaction of complex molecular
systems such as medium size water clusters (H20),, 10 > n > 25, accommodation of
guest molecules (such as H, CHy4, CO2) inside molecular hosts (i.e. hydrate lattices,
crown ethers, nanotubes)

2) Explore the significance of multi-reference character for systems related to light
harvesting, photovoltaics and catalytic processes

3) Push the state-of-the-art in scalable, accurate electronic structure calculations by
combining expertise in domain science and computer science with specific targets to
efficiently scale on hundreds of thousands of cores

9.4.2 Computational Strategies (now and in 2017)

9.4.2.1 Approach

The strategy is based on a hierarchical approach. Low and medium level calculations are
run either on local resources or at NERSC utilizing a low core count (i.e. up to 500 cores).
High-end calculations require large computational resources in excess of 100,000 cores.

As regards the methodological approach, the second order Moller-Plesset perturbation
theory (MP2) level (scaling as N5, where N is the size of the system), in conjunction with
medium basis sets is used as the starting point in the calculation. Accurate energetics are
obtained by expanding the basis sets, thus estimating the Complete Basis Set (CBS) limit.
For some systems this is adequate, however it is oftentimes required to expand the level of
theory to include additional electron correlation. This is done at the Coupled Cluster level
that includes full single and double and a perturbative estimate of triples excitations
[CCSD(T), scaling N7]. Excited states are treated with the Equation-of-Motion approach
[EOM]CCSD(T)], whereas multi-reference (MR) systems are treated via MR-CCSD(T).

The target by 2017 would be 120 atoms, 400 correlated electrons and 1,500 basis functions
via the most accurate and most expensive method [MR-CCSD(T)].

9.4.2.2 Codes and Algorithms

The main code used to perform the calculations is the NWChem suite of electronic structure
codes (developers: Apra, Kowalski). It is based on the use of the Global Arrays for the
parallelization and ScaLAPACK for parallel linear algebra. The main kernel for (T) in
CCSD(T) is matrix multiply.

For the high-end calculations the number of FLOPS is ~1018, whereas the number of
intermediate triples amplitudes: ~n3* n3; for example, for (H20)24 / aug-cc-pVTZ : ~101e.
The approach has already shown to scale to the full length of petascale hardware (Jaguar
(2009), Blue Waters etc.)

As a result of PNNL'’s investments under the “Extreme Scale Initiative” (Krishnamoorthy,

Kowalski), it has been recently efficiently implemented on GPU technology. Preliminary
tests on ORNL’s Titan (2013) show ~6x speedup. Finally, the multi-Reference
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implementation [MR-CCSD(T)] based on three levels of parallelism (reference level for MR
part, task level within each reference and GPU for (T) contribution) is currently under
development.

9.4.3 HPC Resources Used Today

9.4.3.1 Computational Hours

We used 13 million hours at NERSC in 2013. Other local (PNNL) resources such as PIC and
Cascade (EMSL) are also used.

9.4.3.2 Parallelism

The code as it stands now can use an excess of 200,000+ cores for high-end production
runs., but we typically use 500 - 20,000 cores today at NERSC. We note that NERSC
scheduling does not appear to prioritize large jobs.

Our calculations process through different stages [HF, CCSD, CCSD(T)]. Each has a different
level of efficiency, with the last part being about 95% of the total calculation.

We do not usually compute in High Throughput Computing mode, but some applications
(such as the numerical calculation of second derivatives with CCSD(T)) can benefit from it.

Both strong scaling and weak scaling are important to us; however, strong scaling is the
hallmark of the NWChem application.

9.4.3.3 Scratch Data

Scratch 1/0 is usually minimal (less than 10 TB total). Checkpoint and restart capabilities
need to store intermediate amplitudes effectively up to 5 TB.

9.4.3.4 Shared Data

At the moment the project does not have a NERSC project directory, as there was no need
for it. As more people are included in the project, the need might arise to create one.

9.4.3.5 Archival Data Storage

So far, we have minimal (< 1 TB) needs for HPSS storage.

9.4.4 HPC Requirements in 2017

9.4.4.1 Computational Hours Needed

We have an estimated need of 500M core hours. We arrived at this estimate using data
obtained from previous INCITE awards, which were in excess of 100M hours.

Additional computational resources (~50M hours) are anticipated from local PNNL (PIC,
Cascade @EMSL) hardware that will be obtained via a proposal submission process.

The primary factors driving the need for additional resources by two orders of magnitude
are
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(1) The need to investigate larger systems that go beyond model and approach realistic
ones (i.e., the full light harvesting system including the antenna and the resonance
energy transfer component),

(2) The need to assess the accuracy of electronic structure theories (such as local
methods, Density Functionals, QMC) for larger systems by establishing “the
benchmark” via high-end calculations,

(3) The need to strive for higher accuracy in the underlying theories.

9.4.4.2 Parallelism

Typically 250,000 cores could be used with the ability to use in excess of 1,000,000 if
available and assuming that software required for the parallelization (Global Arrays) is
tuned accordingly. We do not have a strong need to run more than one job concurrently but
if the resources are available 3-5 jobs can be run concurrently. We will not use High
Throughput Computing.

9.4.4.3 1/0

Scratch [/0 is usually minimal (less than 200 TB total). Checkpoint and restart capabilities
need to store intermediate amplitudes in CCSD(T) effectively up to 100 TB. We estimate
needing 1 TB / sec /0 bandwidth.

By doing asynchronous [/0 we are able to keep the time devoted to /0 down to a negligible
amount, < 1 %.

9.4.4.4 Scratch Data

We estimate needing 1 PB in 2017. The primary cause of the growth in scratch space needs
is the size of the system we simulate, future modifications of the code and implementation
of new theories.

9.4.4.5 Shared Data

We estimate that our needs would be accommodated by a 1 TB quota in the NERSC /project
file system

9.4.4.6 Archival Data Storage

We estimate that we'll need to archive about 200 TB to HPSS in 2017. Growth is caused by
having more users and more runs or projects.

9.4.4.7 Memory Required

The current algorithms used can adopt to use as much memory per node as available. An
increase of 5x in memory will be extremely beneficial.

9.4.4.8 Emerging Technologies and Programming Models

The path towards this has already started. Currently there are efforts to extend those
implementations to heterogeneous architectures (GPU/Intel MIC). Speedup currently
achieved is ~6x for numerically intensive parts of the calculation [(T) in CCSD(T)].
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9.4.4.9 Software Applications and Tools

We will need RDMA extensions in MPI; efficient parallel linear algebra for heterogeneous
architectures; efficient libraries for parallel I/0 (not as crucial).

9.4.4.10 HPC Services

Consulting and account support services will be crucial. NERSC already has an excellent
track record regarding those services. Most of the data are transferred back to local
resources to be analyzed.

A very important issue is related to the various levels of fault tolerance, especially the ones
that are difficult to detect and warn.

9.4.4.11 Time to Solution and Throughput

Implementing a policy around job scheduling to reduce the wait time in the queue for very
large jobs would be extremely helpful.

9.4.4.12 Data Intensive Needs

No additional needs. HPSS is very good and we are very satisfied with the archival storage.
We do not, as of this time, have a data management plan for our project.

9.4.4.13 What Else?

As NERSC moves to larger machines, the issue of fault tolerance becomes very important.
HPC features that or most importance to us are size, speed, memory, and network.
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9.4.4.14 Requirements Summary

Used at NERSC Needed at NERSC

in 2013 in 2017
Computational Hours 13 M 500 M
Typical number of cores* used for 500 -20,000 250,000+
production runs
Maximum number of cores* that can be 200,000+ 1,000,000+
used for production runs
Data read and written per run TB <200TB
Maximum I/0 bandwidth GB/sec 1 TB/sec
Percent of runtime for I/0 0.1% <1%
Scratch File System space 10 TB 1PB
Shared filesystem space 0TB 1TB
Archival data 622 GB 200 TB
Memory per node GB GB
Aggregate memory TB TB

* “Conventional” cores
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9.5 Molecular Dynamics of PNIPAM Agglomerates and
Composite Architectures

Principal Investigator: Sanket A. Deshmukh (Argonne National Laboratory)

Worksheet Authors: Derrick C. Mancini, Subramanian Sankaranarayanan, Ganesh Kamath,
(Argonne National Laboratory)

NERSC Repositories: (1) m1528, Agglomeration dynamics in thermo-sensitive polymers
across the lower critical solution temperature (Deshmukh is PI)

(2) m1524, Molecular dynamics simulation of PNIPAM-coated gold nanoparticles (Mancini
is PI)

9.5.1 Project Description

9.5.1.1 Overview and Context

Our group’s research is focused on the large-scale atomic-level modeling of temperature-
sensitive polymers and direct comparison of our simulation results with the results of
ongoing experimental work at the Advanced Photon Source (APS) division of Argonne
National Laboratory (ANL). Mainly, we are conducting all-atom molecular dynamics (MD)
simulations of Poly(n-isopropylacrylamide) (PNIPAM) in aqueous media across their lower
critical solution temperature (LCST).14+ PNIPAM represents an important class of thermo-
sensitive polymers that undergoes a coil-to-globule transition above the LCST around 32°C.5
This coil-to-globule transition is also of great importance in a number of practical
applications including energy storage and conversion, drug delivery, medical diagnostics,
tissue engineering, electrophoresis, separation, and enhanced oil recovery.t. 7 Brush
structures of PNIPAM consist of the flexible macromolecules anchored by a special end
group to a substrate at sufficiently large grafting density, such that different PNIPAM chains
overlap. Such brush structures have potential applications as chemical valves.8® For
example, tuning the LCST of PNIPAM close to human body temperature via
copolymerization can enable development of controlled drug delivery system.10.11

Understanding the mechanism, thermodynamics, and kinetics of the conformational
transformations of linear polymer chains is a fundamental problem in the field of polymer
science.12 13 For thermo-sensitive ionic polymers, the change in conformation with
temperature is the fundamental basis of thermal sensitivity. Specifically, for aqueous
PNIPAM solutions, observations of phase separation or phase change at LCST occurs as a
macroscopic manifestation of the coil-to-globule transition followed by aggregation.l4 Key
to understanding this coil-to-globule transition in PNIPAM are the effect of the local
structure of the surrounding medium, the effect of the interaction of surrounding medium
with the polymer on the dynamics of agglomeration and the coil-to-globule conformational
transition, and the exact mechanism of agglomeration of PNIPAM oligomers and high-
molecular-weight PNIPAM chains. In the case of PNIPAM architectures such as brush
structures, effect of grafting density and chain length of PNIPAM, the effect of
hydrophobic/hydrophilic nature of substrate, and themorphology of substrate (sphere vs.
planar) on the coil-to-globule transition are not very well understood. Using current
experimental techniques it is very difficult to probe the conformation and extent of
entanglement of PNIPAM chains, both below and above the LCST, in such brush structures.
Even when x-ray, neutron, or dynamic light scattering measurements are used to study
these transitions, it is necessary to have sufficiently accurate detailed models to correctly fit
the data and interpret the results.

Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 81



Our team has successfully studied the nature of these conformational transitions in
oligomers of PNIPAM through the LCST by coupling high performance computing (HPC)
with MD simulations. We have probed the local structure of the surrounding medium and
its interactions with the polymer and on the conformational transitions, and thereby on the
functional properties (e.g. diffusion) of the short-chain-length oligomers. Our results of all-
atom MD simulations of PNIPAM consisting of 30-monomer units suggested that proximal
water plays a key role in determining LCST behavior of PNIPAM. Additionally, the structure
of proximal water also dramatically changes during this coil-to-globule transition of
PNIPAM through the LCST. Today, very few theoretical studies, however, have been carried
out on simulations of thermo-sensitive polymer architectures in presence of explicit
solvent.9 12 15-17 Recently, we have successfully carried out all-atom MD simulations of
PNIPAM grafted brush structures (See Figure 1 (b)) in water. Depending upon the size of
the nanoparticle and chain length of the PNIPAM chains, the size of these systems varied
from 3 to 9 million atoms. Initial results of our simulations suggest that PNIPAM chains are
in a coil-like-state and entangled below the LCST. Above the LCST, however, the PNIPAM
chains transform into a globule-like-state and locally collapse and agglomerate to result in a
transformed morphology of the entire structure. Additionally, the structure of the proximal
water dramatically changes as the PNIPAM chains undergo these coil-to-globule transitions.

(b) Coil-state Globule-state

(a) Coil-state Globule-state

Figure 1: (a) Coil-to-globule transition of 30-mer of PNIPAM (water molecules are not
shown for clarity) (b) Coil-to-globule transition of 60-mer of PNIPAM grafted on a gold
nanoparticle in presence of water molecules (System consisting of ~9 million atoms). Gold
nanoparticles and water are shown in yellow and red, respectively.

9.5.1.2 Scientific Objectives for 2017

In the case of MD simulations of PNIPAM brush structures: currently, we are probing effect
of shape, size and nature of substrate on the coil-to-globule transition of PNIPAM and
structure of water. Our long-term goals (year 2017) are to answer following questions: 1)
What is the effect of chain length and grafting density polymer chains and size of
nanoparticles on the morphology and geometry of the agglomerated or self-assembled
structures? 2) What is the effect of increase in hydrophilicity or hydrophobicity of PNIPAM
through copolymerization on the coil-to-globule transition of PNIPAM and self-assembly of
nanoparticles? 3) How can the morphology be controlled by adjusting the hydrophilicity or
hydrophobicity of nanoparticles? 4) What is the role of proximal water in driving the self-
assembly of these polymer brush structures both below and above the LCST? 5) What are
the dynamic properties and mechanism of nanoparticle-nanoparticle interactions mediated
by the polymer brush structures? 6) What is the atomistically-derived driving force for the
self-assembly of these polymer brush structures? And 7) How can we utilize the
atomistically-derived interactions of these structures to create mesoscale coarse-grained
models of their behavior that can be scaled up to model larger assemblies over longer
times? To this end, we propose to carry out all-atom simulations of multiple polymer brush
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structures by strategically placing them in vicinity of each other. This will allow us to extract
information from atomic-level models of these brush structure, which will be utilized to
build coarse-grained models of these brush structures. The overall aim of our coarse-
graining approach is to provide a simple model that is computationally fast and easy to use,
and can give significant insights on the structural and dynamics processes during the self-
assembly of these polymer brush structures. Moreover, the results of these simulations can
be used to construct models of the behavior of these assemblies for direct comparison to
scattering measurements and microscopies.

In the case of agglomeration of PNIPAM chains both below and above the LCST, we propose
to study the effect of various end groups and copolymers on the agglomeration of PNIPAM,
as well as the effects of tacticity. Additionally, we also plan to study the effect of various salt
ions, ionic liquids, and solvent mixtures (methanol-water, ethanol-water etc.) on the
agglomeration of PNIPAM.

9.5.2 Computational Strategies (now and in 2017)

9.5.2.1 Approach

To study both agglomerations of PNIPAM as well as larger PNIPAM architectures (brush
structures, nanogels, hydrogels etc.), we currently employ all-atom molecular dynamics
(MD). In the case of PNIPAM brush structures, goal is to understand the effect of
temperature, grafting density, and substrate used for grafting of the PNIPAM chains on the
structural and dynamical properties of polymer brush structures of PNIPAM. The
simulations of PNIPAM chains grafter on gold nanoparticles of ~6, ~10, and ~15 nm
diameter with grafting densities in the range of 0.05 and 0.4 chains/nmZ2are performed at
278 K and 310 K to study the effect of temperature on the polymer structure and evaluate
the structural phase transition in PNIPAM. Our simulations of single chain PNIPAM suggests
that to observe a clear coil-to-globule transitions in PNIPAM MD simulations must be
carried out for ~20 ns. Hence, we conduct simulations up to ~25-30 ns with a time step of
1fs. The atomic trajectories (atom positions, temperature, pressure, velocities etc.) will be
accumulated and stored every 1ps. Trajectory files obtained from these simulations will be
analysed for various dynamical properties.

In the case of agglomeration of PNIPAM chains We initiated our study with two chains of
PNIPAM chains consisting of 100 monomer units (100-mer) followed by insertion of water
molecules in a simulation cell. This system was relaxed for ~50 ns which was followed by
random insertion of a third chain of 100-mer both at 275 K and 325 K. Again the system was
relaxed for ~30 ns both at 275 K and 325 K. This procedure was carried out till we have 5
chains of 100-mer.

In the future, to study both agglomeration and polymer architectures, we plan to use meso-
scale models, which will allow us to study systems consisting of billions of atoms and up to
timescales of microseconds. This will allow the direct comparison of our simulation results
with the experimental results. In addition, we also propose to study in a similar way the
copolymers of PNIPAM as well as other ionic polymers, particularly of potential interest to
energy and environmental problems.
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9.5.2.2 Codes and Algorithms

In this study to conduct MD simulations, we employ the NAMD simulation package with
CHARMM force fields, which is designed for parallel computation. Full and efficient
treatment of electrostatic and van der Waals interactions are provided via the (O(NLogN)
Particle Mesh Ewald algorithm. NAMD includes a rich set of MD features, such as multiple
time stepping, constraints, coarse-grain force-fields, and dissipative dynamics. Table 1 gives
the scaling data for NAMD using CHARMM force-field for a PNIPAM-water system consisting
of ~3M atom on HOPPER.

Table 1. Scaling study for a brush structure of PNIPAM in water molecules (~3 million
atoms) on Hopper.

Strong scaling of PNIPAM-water system for 3 ns with time-step
of 1fs.
Cores Time (minutes) Efficiency
3072 ~2160 1.0
6144 ~1080 1.0
9216 ~1075 0.5
12228 ~1070 0.5

9.5.3 HPC Resources Used Today

9.5.3.1 Computational Hours

Our projects m1528 and m1524 used 13 M computing hours at NERSC. In addition to the
NERSC computing facility we are getting support from the Argonne Leadership Computing
Facility (ALCF) at the Argonne National Laboratory (ANL).

9.5.3.2 Parallelism

The number of cores we use on Hopper varies from 4,096-8,192, depending on our system
size. For example, to conduct simulations of systems consisting of ~400 K atoms we utilize
4,096 cores; to conduct simulations with a million atom systems, we utilize 8,192 cores.

We mainly use NAMD with CHARMM force field to conduct our simulations. NAMD can be
scaled up to ~32 K cores.

The system sizes of our simulations vary between ~400 K atoms to ~10 M atoms. For these
system sizes NAMD scales better on the core range of 4096-8192 for currently used
machines.

We do not have any computation in High Throughput Mode.
For our project, both strong and weak scaling are equally important.

9.5.3.3 Scratch Data

The system sizes of our simulations vary from 400 K atom to 10 M atoms. To study coil-to-
globule transition in PNIPAM, we need to conduct simulations for ~30 ns or more. To access
the structural and dynamical properties of PNIPAM and proximal water, we need to store
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our trajectories every 1 ps. Given the system size, our trajectory files can be in the range of
100-500 GB/simulation.

9.5.3.4 Shared Data

Our project has been allocated a project directory named “pnipammd.” The primary reason
for this space is to store intermediate-term archive data generated from our simulations.

9.5.3.5 Archival Data Storage

The directory was allocated recently. We have not stored any data as of now but we expect
to store ~4-5 TB of data by the end of 2013.

9.5.4 HPC Requirements in 2017

9.5.4.1 Computational Hours Needed

Based on the current scaling data for the software on the conventional machines and given
the large-scale of simulation models of polymer brush structures and various agglomeration
studies of PNIPAM copolymers that will be treated in the proposed work, we expect that a
large amount of time will be required, and therefore would request approximately
~500,000,000 core hours of CPU time on the conventional machine.

We expect to receive computing support from ALCF computing facility at the ANL for
related projects.

In the next stage of our research plan we propose to develop computational models of
different polymer architectures at multiple levels (atomic- to meso-scale) to study the
conformational transformations and agglomeration behavior and their role in self-
assembly. Given the large-scale simulation models of self-assembly of polymer brush
structures that will be treated in the proposed work, we expect that a large amount of time
will be required.

9.5.4.2 Parallelism
We expect to use ~32 to 64 K computing cores in 2017.

Currently NAMD shows strong scaling up to ~32 K cores. We expect we can use at least 32 K
cores by 2017.

We expect to run at least two jobs concurrently. The aim of our project, in 2017, is studying
the self-assembly of nanoparticles composites below and above the LCST of PNIPAM. Hence,
we expect to run simulations for at least at two temperatures, below and above the LCST of
PNIPAM.

9.5.4.3 1/0

See the sections immediately below.

9.5.4.4 Scratch Data

Currently, we need temporary disk space of ~4-5 TB for our simulations. In the future, we
expect to utilize 8-10 TB of disk space, as the system size of our simulations will be much
larger than what we are currently simulating. Additionally, to compute various structural
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and dynamical properties of materials and solvent we will be storing trajectory files every
pico-second. This will lead to generation of trajectory files of ~2-3 TB/simulations. As we
will be running more than 1 simulation concurrently, we expect temporary disk space of 8-
10 TB.

As mentioned earlier, we propose to simulate self-assembly of polymer nanoparticles. In
this study we propose to use meso-scale models and to study realistic system sizes of
billions of atoms, which will allow us the direct comparison of our experimental results with
the results of our simulations. In the initial stages of these simulations all-atom systems
consisting of millions of atoms will be equilibrated for ~5-6 ns. Coarse-graining of the
simulated system will follow this and further simulations will be conducted for 5-6
microseconds to capture the dynamics of self-assembly of these brush structures. As the
end of simulation run of 5-6 microseconds, coarse-grained model will be transformed back
to all-atom model and simulations will be conducted for another ~10 ns to retain and study
the atomic level structure of these polymer brushes. These factors are what lead to the
increase in scratch data required.

9.5.4.5 Shared Data
We expect requirements for NERSC project directory space of ~20 TB.

We propose to study the more realistic system sizes for self-assembly of PNIPAM coated
nanoparticles, which will allow us direct comparison of results with our experimental
results. The systems will consist of millions of atoms and the trajectories generated will
cover simulation runs of microseconds. The size of each trajectory will be in 2-3 TB and we
will be running at least 5-6 such simulations under different conditions. These factors are
what lead to the increase in project data required.

9.5.4.6 Archival Data Storage

We would be storing all the data generated from our simulations. We estimate 20 TB of data
to be generated in 2017. Increase in the system size and simulation time is causing the
growth in archival storage.

9.5.4.7 Memory Required

NAMD has traditionally used less than 100 MB of memory even for systems of 100,000
atoms. With the reintroduction of pair lists in NAMD v2.5, however, memory usage for a
100,000-atom system with a 12-A cutoff can approach 300 MB, and will grow with the cube
of the cutoff. This extra memory is distributed across processors during a parallel run. We
expect to use the 12-A cutoff for our systems; hence, we estimate the 300 to 500 MB
memory for our systems.

9.5.4.8 Emerging Technologies and Programming Models

The NAMD code is ready to be used on GPUs. We are successfully using NAMD on the GPUs
on the "Carbon" cluster at the Center for Nanoscale Material, Argonne National Laboratory.
Preliminary observations suggest that NAMD is faster on GPUs than traditional CPU cores.

9.5.4.9 Software Applications and Tools

We will need following software and libraries:
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MD software: NAMD, LAMMPS
Libraries: MPI, FFTW

Compilers: FORTRAN, C, C++, PYTHON
Visualization software: VMD, RASMOL

9.5.4.10 HPC Services

We need consulting and account support, data analytics, and visualization.

9.5.4.11 Time to Solution and Throughput
N/A

9.5.4.12 Data Intensive Needs

While intermediate-term archival storage is being made on NERSC systems, as important is
efficient file transfer from NERSC to local data systems for analysis and long-term archival

storage. We are satisfied with NERSC's HPSS system.

We already have proposed budget to procure storage in 2017 to provide for our project's

data management plan.
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9.5.4.13 Requirements Summary

Used at NERSC Needed at NERSC

in2013 in 2017
Computational Hours 13 M 500 M
Typical number of cores* used for 4,096 - 8,192 ~32K - 64K
production runs
Maximum number of cores* that can be ~32K ~32K - 64K
used for production runs
Data read and written per run ~1.0-15TB ~2-3TB
Scratch File System space ~4-5TB ~15-20TB
Shared filesystem space 0TB 20TB
Archival data 0TB 20TB
Memory per node 2-3GB 4-5GB

* “Conventional” cores
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9.6 Sampling Diffusive Dynamics on Long Timescales, and
Simulating the Coupled Dynamics of Electrons and Nuclei

Principal Investigator: Thomas Miller (California Institute of Technology)
NERSC Repository: m822

9.6.1 Project Description

9.6.1.1 Overview and Context

The goal of this research is to develop and employ new theoretical and computational
methods for understanding the dynamics of complex systems. We are focused on two main
areas of research that are of fundamental interest to the DOE-BES mission: (i) coupled
electronic and nuclear dynamics in enzymes and photo-catalysts and (ii) long-timescale
dynamics in protein-transport processes involving transmembrane channels. A critical
aspect of this research is the development of simulation algorithms to leverage the
massively parallel computational systems. The support of NERSC computer resources is
critical in our efforts to understand and design of chemical processes that are critical for
solar energy conversion, enzyme catalysis, and biomolecular transport. This project is of
direct relevance to the DOE basic energy science (BES) mission.

All aspects of our work utilize NERSC resources - a critical resource for our progress.
Available computational resources limit many applications, so we need more hardware
access, increased numbers of available processors and increased processor speed. Also,
NERSC support is important for our efforts.

Public software is a less critical bottleneck for us at this time, but the currently available
codes are essential to our work.

9.6.1.2 Scientific Objectives for 2017

By 2017 we expect to develop and utilize new methods to achieve these two focuses.

9.6.2 Computational Strategies (now and in 2017)

9.6.2.1 Approach

We approach these problems computationally at a high level by using quantized molecular
dynamics (MD), classical MD, and course-grained simulation methods.

9.6.2.2 Codes and Algorithms

The codes we use are either developed in-house or are modified versions of existing
programs, such as NAMD, GROMACS, DL_POLY, or AMBER. These codes are characterized
by these algorithms: molecular dynamics (ODE) integration and FFTs. Our biggest
computational challenges are FLOP availability and queue times. Parallel scaling is typically
limited by potential energy surface evaluation, number of DOFs, and number of weakly
coupled trajectories.
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By 2017 we expect to make increased use of GPUs but we also expect increased
computational cost (and parallel scalability) of potential energy surface evaluations. We
also expect to simulate large systems for longer times.

9.6.3 HPC Resources Used Today

9.6.3.1 Computational Hours

We use Carver, Edison, and Hopper at NERSC and used about 21.4 M hours during 2013.
We also used about 9M hours on Jaguar at OLCF and about 8M at ALCF (on Intrepid and
Vespa).

9.6.3.2 Parallelism

We typically use 500-2,000 processors per set of jobs (tight parallelization for trajectories,
weak among them), which take about 6-12 hours per trajectory, and we do hundreds of
such runs per year. Memory usage per core is modest: 50 - 100 MB / core.

9.6.3.3 Scratch Data

Data read or written during our runs is modest: 1-5 GB.

9.6.3.4 Shared Data

We have only 2 GB stored in /project today, but we estimate needing 4 TB of shared space
in 2017.

9.6.3.5 Archival Data Storage

We have 33 TB stored in the NERSC HPSS Archive system in 2013. Based on past growth
rates, we expect to have about 75 TB stored in 2017.

9.6.4 HPC Requirements in 2017

9.6.4.1 Computational Hours Needed

We estimate needing 150 M hours, due to increasing demands of potential energy surface
(PES) evaluations.

The primary driving factor is the need to make advances in the following areas:

* Quantitative prediction of biological and catalytic processes, design of new catalysts;
* Theory-guided enhancement of integral membrane protein expression;
* Progress towards the computational design of electrolyte and electrode materials.

9.6.4.2 Parallelism

We expect a 10-to-20-fold increase in concurrency due to greater PES parallelizability with
no other major changes. We do not use high throughput computing. We expect no changes
to the amount of data read or written, no changes to the software we require, and expect to
need no more than about 1 GB/core of memory. We ask that NERSC recognize the value of
ensemble calculations, while also encouraging efficient parallelization.

Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 91



9.6.4.3 Emerging Technologies and Programming Models

We have expanded utilization of GPUs in many/most simulation studies (not at NERSC). To
date we have prepared for manycore by:

— Utilization of local (Caltech-based) GPU machines
— Utilization of GPU implementations of classical MD packages

— Working with CS groups at Caltech and Pomona Colleges to develop efficient
GPU versions of the coarse-grained simulations

We are already planning to also develop and implement GPU versions of existing codes.

To be successful on many-core systems we will need help with efficient implementation and
scaling tests.

9.6.4.4 Other Comments

Please don't make the queues too short.

9.6.4.5 Requirements Summary

Used at NERSC Needed at NERSC

in 2013 in 2017
Computational Hours 214 M 150 M
Typical number of cores* used for production 500-2,000 5,000-40,000
runs
Maximum number of cores* that can be used 2,000 40,000
for production runs
Shared filesystem space 2GB 4TB
Archival data 33 TB 75 TB
Memory per node 50-100 MB/core

* “Conventional” cores
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10 Geoscience Case Studies

10.1 Large Scale Geophysical Inversion & Imaging

Principal Investigator: Gregory Newman (Lawrence Berkeley National Laboratory)
NERSC Repository: m372

10.1.1 Project Description

10.1.1.1 Overview and Context

Geophysical Imaging - The Basics: Geophysical imaging involves mapping the physical
attributes of the Earth’s subsurface, such as electrical conductivity (resistivity), seismic
velocity, mass density, fluid saturation, etc. This requires thousands of simulations, each of
which solves partial differential equations (PDE) that describe the physical fields of interest.
Examples of such fields arising in geophysical prospecting include gravity, electrostatic,
electromagnetic (EM), acoustic and elastic waves. From those solutions, the attributes of
interest can be derived.

The solution of the corresponding imaging problem typically seeks to minimize the errors
between the observed and simulated field, typically in a least squares statistical sense based
upon an L; norm; sometimes large outliers in the noise of the observations can produce
significant bias in the solution and an L; norm may be preferred to mitigate the overstated
influence of outliers. The size of imaging and data volumes required for a 3D imaging
experiment is considerable. Millions of unknowns are needed to describe the 3D
distribution of the subsurface attributes and data density exceeding millions of
observations may be necessary to provide sufficient spatial aperture necessary for adequate
sensitivity to the subsurface. In seismic imaging, data volumes can easily exceed several
terabytes arising from 1000’s of sources and 1000’s of detectors per source.

Our research objectives will be to further develop and apply three-dimensional (3D)
geophysical imaging methods, incorporating electromagnetic, and extended to gravity data
and seismic data under a joint geophysical imaging framework. Our approach is to use as
much rigor as possible and to avoid approximations, which sacrifice solution accuracy for
speed. The need for a full solution to the geophysical imaging problem has been critical
since we are now focusing on joint imaging problems in complex geological terrains, where
fast 2D and 3D approximate methods are unsatisfactory. Moreover, to better model complex
geological formations, we are now implementing a finite element module for EM field
simulation and imaging, in which the mesh can now conform to these geological interfaces.
Our goal is to image the subsurface geophysical properties (electrical conductivity, density,
and seismic velocity and other elastic attributes) in three spatial dimensions with sufficient
spatial resolution to advance energy resource exploitation and address the DOE and Office
of Science mission in energy security. Our work also addresses the DOE mission in
remediating the nation’s waste legacy issues and DOE sponsored projects for protection and
safeguarding of the subsurface environment and water resources. An outstanding feature
of our work is the use of massively parallel (MP) and GPU computers to create realistic
imaging solutions that cannot yet be achieved with serial machines or modest size PC
clusters. Up scaling the imaging process to tens of thousands of processors and beyond so
that one imaging (inversion) experiment of a field data set can be carried out in days rather
than months, as is now the case, will continue to be a priority.
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10.1.1.2 Scientific Objectives for 2017

By 2017 we will have completed implementation of a massively parallel 3D elastic wave
field imaging code along with joint seismic-electromagnetic imaging capabilities for
characterizing subsurface elastic attributes, which include mass density, compression and
shear velocity, bulk and shear modulus and electrical resistivity. Demonstration of the
imaging codes on complex 3D test models and data sets will demonstrate their capabilities
and potential. Because the 3D elastic and joint imaging codes will come with considerable
computational expense, the use of faster solvers will be required. Development of new
scalable algebraic multi-grid solvers and preconditioners in complex arithmetic will be
essential to meet our scientific objectives.

10.1.2 Computational Strategies (now and in 2017)

10.1.2.1 Approach

Practical solutions of the 3D imaging problem are based upon non-linear least squares
optimization principles that uses some variant of Newton, Gauss Newton, non-
linear/steepest decent techniques. They are often termed “deterministic imaging” because
of their reliance on a good starting model. With large scale model parameterizations of the
attributes and the data volumes needed for a viable 3D imaging experiment, it is best to
avoid direct formulation of the Hessian and Jacobean in the solution of a deterministic
optimization problem. These operators are dense and the cost of direct formulation is
considerable, even on a distributed computational platform. Instead, it is advisable to only
compute the action of these operators on a vector. Because the inversion process is non-
unique and unstable additional steps are required to stabilize or regularize the problem.
These include constraints on any acceptable models based on a priori information, and a
means to appraise what features in these models are necessary to explain the data. As a
natural consequence, one solution to the inverse problem is insufficient. Rather multiple
solutions are needed using different assumptions on the background geology,
regularization, data noise, and starting models used to launch the non-linear inversion
process.

High performance computing (HPC) resources are essential for realization of 3D
geophysical imaging experiments within an acceptable timeframe. Massively parallel (MP),
multiple instruction multiple data (MIMD) machines have been the standard platform for
high performance computation for nearly the last 24 years. These machines have dedicated
access to 10’s to 100,000’s of compute tasks. The smallest MIMD machines (clusters) are
typically a few tens to hundreds of compute tasks, while the largest machines are to be
found in super-computing centers around the world, such as the National Energy Research
Scientific Computing (NERSC) center. Large and small MIMD machines rely on a dedicated
backbone for communication amongst the computing cores. The standard Message Passing
Interface (MPI) is used for inter-processor communication. MPI provides portability so MP
software can be run across a range of MIMD platforms, including dedicated distributed
machines and/or distributed network of machines. The recent arrival of graphics
processing units (GPUs) is allowing new alternatives for solving geophysical imaging
problems on HPC platforms. Recent implementations of geophysical imaging software on
GPUs shows encouraging cost versus performance metrics compared to MIMD
architectures; cost includes not only money but time. In the last few years GPUs have gained
considerable favor in the oil and gas industry for seismic imaging.
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Computational approaches for 3D simulation of geophysical wave fields (i.e. seismic and
electromagnetic) will favor finite difference and finite element implementations because of
their flexibility in modeling complex geologies. Successful approaches in dealing with large-
scale model parameterizations and data volumes exploit multiple levels of parallelization.
At one level of parallelization, a domain decomposition of the attributes (the model) is made
across a subset of computational tasks, called a local processor group, and is distributed
across multiple copies of these groups. Because the data calculations are independent on
each group, results are embarrassingly parallel and scale with the number of groups
employed. Implicit solver methods take advantage of this processor topology, where
iterative Krylov solvers are ideally suited for such problems, since each calculation is
independent of the others. A similar strategy can be used for solving wave propagation
problems with explicit methods that exploit some type of time stepping scheme. We have
previously demonstrated the efficiencies that can be gained with such distributed
computations where in one experiment we employed 32,768 computing tasks (compute
cores) on the IBM Blue Gene Machine to solve a 3D EM imaging problem. While this
application was demonstrated in 2008, at the time it required enormous resources to
execute, and clearly demonstrated that 3D imaging problem could be solved in days, rather
than weeks on more modest size clusters. It offered important verification that with
industrial size imaging problems one could exploit fine and course gain parallelism to
achieve solutions on a time scale acceptable to energy exploration companies.

Recently, there has been interest in multi-frontal direct solvers in large-scale geophysical
field simulations, which can easily be adapted to many-core architectures. Popular, parallel
multi-front solvers libraries include MUMPS, Super LU, and PARDISO, among others. While
there is much appeal in exploiting these parallel solvers, large model parameterizations and
corresponding meshes that arise in 3D geophysical imaging applications will in general limit
their applicability to modest size problems.

We believe our main computational strategy in 2017 will focus on finite element solutions
and associated imaging using the elastic-dynamic equations arising in seismology, along
with Maxwell’s equations and the associated DC equations on unstructured meshes. The
linear systems that result from unstructured meshes are large, sparse, and highly ill
conditioned. Very efficient and scalable iterative solutions to these linear systems will be
needed. In this context, it is interesting to note that algebraic multi-grid (AMG) solvers have
not received much attention for the types of geophysical field simulation problems that are
of interest to us. AMG is reportedly the optimal iterative solution method that can be
applied to sparse linear systems. While AMG (as well as geometric multigrid solvers) have
been successfully developed for real systems, DC type problems for example, application to
complex, and complex-symmetric systems have proven more difficult and elusive. One
possible reason may be attempts to use AMG libraries designed for real systems on complex
systems, which are expressed in terms of equivalent real forms (ERF). Interestingly, Freund
in 1992 warned that Krylov solvers designed for real systems, such as GMRES, were not
very effective when applied to complex symmetric linear systems expressed in ERF. Freund
claimed that it is better to solve such systems directly in the complex domain, and
developed the QMR and the transpose-free QMR methods for that task. One reason for poor
performance on ERF is the resulting complex eigenvalue distribution, which is folded about
the real axis, and this folding could cause problems with the Krylov iteration. From my own
experience, a similar problem is observed when AMG, designed for real systems, is applied
to complex-symmetric systems. Development of robust AMG solvers formulated specifically
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for complex linear systems (symmetric and non symmetric) is clearly needed and should be
made available for production MP scientific computation by 2017.

In anticipation of enhanced NERSC computing resources approaching 100’s of Petaflops, we
will embark to solve geophysical simulation and imaging problems, and corresponding data
volumes at unprecedented size and scale, exceeding one billion grid points and data sets
exceeding tens of millions of measurements. For elastic wave propagation and imaging,
problems of this size will be especially challenging, but the computational resources are
expected to be available to tackle the problem. We therefore anticipate using on the order of
900,000,000 core hoursin 2017.

10.1.2.2 Codes and Algorithms

Code EMGeo: Simulates and Inverts electromagnetic fields for subsurface conductivity in
three spatial dimensions; uses finite difference approximations, preconditioned iterative
Krylov solvers, explicit time-stepping methods, and preconditioned gradient optimization
methodologies. Techniques now extended to gravitational fields and seismic wave field
propagation simulation and imaging problems, concurrently. Geophysical attributes that
can now be imaged included seismic velocities, mass density, shear modulus, bulk modulus
and electrical conductivity.

10.1.3 HPC Resources Used in 2013

10.1.3.1 Computational Hours
We used 29 million hours at NERSC in 2013.

10.1.3.2 Parallelism

We currently use 5,000 to 20,000 compute cores at NERSC. The maximum number of cores
that EMGeo can use for production runs today is 153,216 compute cores, which comprises
all the compute cores on Hopper. Because shared allocation of machine resources, we use
far fewer compute nodes because requests for more resources that would limit our
production due to excessive queue wait times.

We do not currently use High Throughput Computing mode.

Our problems exhibit strong scaling. We have a problem of a given size and we need to use
parallel computing to solve it in an acceptable timeframe.

10.1.3.3 Scratch Data

We need approximately 2 Terabytes of temporary space.

10.1.3.4 Shared Data
We do not currently have such a NERSC project directory.

10.1.3.5 Archival Data Storage
Our project did not take advantage of the NERSC archival data storage facility.
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10.1.4 HPC Requirements in 2017

10.1.4.1 Computational Hours Needed

At a minimum, we would need 300,000,000 core hours in 2017 (30X our 2013 allocation) and
could use 900,000,000 (30X our actual 2013 usage) to achieve our research goals.

The size of imaging and data volumes required for a 3D imaging experiment will expand
considerably. Millions of unknowns will be needed to describe the 3D distribution of the
subsurface attributes and millions of observations will be exploited to provide sufficient
spatial aperture for adequate sensitivity to the subsurface. In seismic imaging, data volumes
can easily exceed several terabytes arising from 1000’s of sources and 1000’s of detectors
per source.

We do not expect to receive any significant allocations from sources other than NERSC.

10.1.4.2 Parallelism
We expect to use 20,000 to 50,000 cores per run.

Over 1,000,000 compute cores could easily be exploited for the largest seismic data sets.

We might need several jobs running concurrently.

10.1.4.3 1/0

We expect to write about 10 Terabytes per run in 2017. Depending upon the application,
approximately 16 to 160 Gigabytes of data would be written to scratch for checkpointing.

We would be willing to devote only 10 percent of the total runtime to I/O but our problems are
not typically I/O constrained. They are CPU constrained.

10.1.4.4 Scratch Data

For the largest computational problems, we estimate needing 2 to 10 Terabytes temporary disk .

10.1.4.5 Shared Data

We do not anticipate the need of anything beyond the NERSC default project space of 1 TB
per project.

10.1.4.6 Archival Data Storage

We do not anticipate the need to store a significant amount of archival data for 2017.

10.1.4.7 Memory Required

This will depend on the number of compute core per node. The current Hopper system has
24 compute cores per node with 32 GB of memory per node on most of its nodes (6,000);
300 nodes have double that 64 GB. Expanding the memory to 100 GB per node by 2017
would be beneficial.
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10.1.4.8 Emerging Technologies and Programming Models

While we have taken advantage of GPU architectures, we still favor the CPU-MPI
interconnect for performance. A very strong case would have to be made to for us to engage
in any significant reprogramming of our software to take advantage of specialized and
heterogeneous computing environments. We conducted direct comparisons of our
applications on GPU - CPU/MPI configurations. Our finding was that the speedups from
GPUs, while impressive, were still not optimal; where for the largest applications, CPU/MPI
configurations would out-preform the computation of a single GPU. We did not attempt the
computations across multiple GPUs because of inefficiencies in message passing between
GPUs. Clever reprogramming of our application on a heterogeneous MPI/CPU/GPU system
could solve this problem, provided we see that we can scale up the size of our computations
and are prudent in how the computational work is distributed across the machine. Once
such a system is there that will scale to the levels we need, we will take advantage of it to
optimize performance of our codes.

Regarding OpenMP, the current view is that we would not see that much benefit. However
we can still investigate this further to see if better performance can be achieved.

In sum, we will engage in significant reprogramming of our software to take advantage of
specialized and heterogeneous computing environments when there is a clear benefit to
performance in our computations.

10.1.4.9 Software Applications and Tools

We need support for Fortran 90 and 95, MPI, C, C++, CUDA and Open CL for GPU
technologies.

10.1.4.10 HPC Services
We do not know yet what services we'll require in 2017.

10.1.4.11 Time to Solution and Throughput

Time to solution is a big deal for us. We will need faster and bigger computing machines to
advance our work. We would like to see a 10x speed up in our time to solutions. Any
combination of increase in processing power, number of compute core and speed, would be ideal.

10.1.4.12 Data Intensive Needs

We do not at this time envisage additional needs, beyond an increase in computational
power, as described above, that can be applied to our problems. This will allow us to expand
the size of the data sets we would treat.

So far we have not used NERSC's HPSS system, so we cannot comment on it.

We do not at this time have a data management plan in place for our project.

10.1.4.13 Additional Comments

At this point no, our main concern is for NERSC to expand the size and speed of the
computational systems. Faster job turnaround is the most important and useful service that
NERSC could provide.
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10.1.4.14 Requirements Summary

production runs

Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours 29 M 900 M
Typical number of cores* used for 18,000 50,000

Maximum number of cores* that can be
used for production runs

Greater than
10,000

Greater than
300,000

Percent of runtime for 1/0

< 10 percent

< 10 Percent

Scratch File System space 2TB 20 TB
Shared filesystem space 16 GB 1TB

Archival data 172 GB 10 TB
Memory per node 32GB 100 GB

Aggregate memory

modest estimate
10 TB

modest estimate
30TB

* “Conventional” cores
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10.2 Computational Studies in Molecular Geochemistry

Principal Investigator: Andrew R. Felmy (Pacific Northwest National Laboratory)
Additional Worksheet Author: Eric ]. Bylaska (Pacific Northwest National Laboratory)
NERSC Repository: mp119

10.2.1 Project Description

10.2.1.1 Overview and Context

The chemical complexity and time scale of the problems likely to be encountered in new
energy strategies (e.g., CO2 sequestration, nuclear waste storage, energy storage materials)
will require a much larger dependence on molecular simulation for interpretation, impact
assessment and design [1]. The difficulty of simulating these processes is greatly increased
by the sensitivity of the processes at the macroscopic scale to the atomic scale; the
unusual/unexpected bonding behaviors of the materials; complex, defected and extreme
temperature and pressure environments likely to be encountered; and the requirements
that simulations be parameter free as possible and extremely reliable. The well-developed
tools of quantum chemistry and physics have been shown to approach the accuracy
required. However, despite the continuous effort being put into improving their accuracy
and efficiency, these tools will be of little value to condensed matter problems without
dramatic improvements in techniques to traverse and sample the high-dimensional phase
space needed to span the ~1012 time scale differences between molecular simulation and
chemical events. Current methods for exploring phase space are imperfect; e.g., explicit time
integrators for non-linear differential equations are not parallelized and require small time
steps, implicit time integrators show significant energy drift, free energy methods need very
large numbers of iterations to converge even simple processes, and search methods for
complex processes require appropriate order parameters that are often unknown. New
methods for time integration, efficient exploration of phase space, and choosing order
parameters will be needed.

The NERSC project Computational Studies in Molecular Geochemistry supports the Basic
Energy Sciences (BES) Geosciences Research Program managed by PNNL. The BES research
program at PNNL supports research in mineral electron conduction/transfer, mineral and
water film nucleation and growth, and the development of new theoretical approaches for
predicting interfacial reactivity. Our effort over the next three years will focus on
developing improved computational models to better describe reaction paths in the
nucleation and growth of minerals.

[1] DOE BES Basic Research Needs Reports (http://science.energy.gov/bes/news-and-
resources/reports/basic-research-needs/)

10.2.1.2 Scientific Objectives for 2017

Macroscopically observable mineral assemblages are often not the result of equilibrium
processes but instead are determined by the dynamics of mineral nucleation and growth.
Hence the mineral assemblages that we observe are often dependent upon the initial
molecular or microscopic events that occur early, in the nucleation of a phase, or later, in
the difference in growth rates between the different mineral phases. In that regard, we
often observe minerals whose presence is determined by complex reaction paths that begin
with the initial steps in mineral nucleation. As an example, in our current research we are
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concerned with the nucleation and growth of magnesium carbonate minerals because of
their possible impact on the long-term sequestration of carbon dioxide in the subsurface.
In such cases, the maximum mass of carbon dioxide that would be sequestrated is related to
the thermodynamic stability of the phases. The more stable magnesium carbonate phase,
the greater mass of carbon dioxide is sequestered. Unfortunately, thermodynamic stability
does not turn out to be a good predictor of the magnesium carbonate phases that actually
form. Instead the exact conditions of mineral nucleation and subsequent rates of growth
determine the magnesium carbonate phases that are experimentally observed (see Figure
1). As aresult, to accurately predict the minerals that form in geochemical systems we must
develop the capability to predict the reaction paths that different phases follow from their
initial nucleation through their subsequent growth phases until they obtain macroscopically
observable size. Unfortunately, this goal is impossible to achieve entirely by experiment
owing to the wide range of temperatures, pressures, and solution phase conditions that may
occur.
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Figure 1. Possible reaction paths in the transformation of an orthosilicate mineral (forsterite) to
possible magnesium carbonate minerals in the presence of CO,. The reaction path involves the
dissolution of Mg2* from the forsterite surface, hydration and/or carbonation of the Mg2?+ ion in
solution, followed by the precipitation of magnesium carbonate mineral phases depending on the
dynamics of the transformation.

Hence our major goal over the next three years is to develop the capability to follow reaction

paths for mineral nucleation and growth. Such a capability would have a wide impact on the
entire field of geosciences and in fact the entire field of chemical sciences.
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10.2.2 Computational Strategies (now and in 2017)

10.2.2.1 Approach

Development of new petascale and cloud (distributed computing) based
computational tools required to treat the highly correlated nature and long time
scales encountered in geochemical problems. The two major bottlenecks in direct
simulation of geochemical processes are the need to accurately represent the atomic level
forces in the system and the very long time scales that may be encountered (e.g., in chemical
reactions). Goal 1: The development of the theory, numerical methods and implementations
required to treat complex chemical processes in the
interface region. These would include highly scalable
g f s density functional (DFT) methods of solutions to
electronic structure problems, highly scalable hybrid
density functional and LDA+U methods and the
development of methods that are capable of treating
L S e T o the highly correlated nature of the electrons in metal
’ oxide materials (DMFT). Goal 2: (i) The exploration of
_§ ‘ new simulation methods that increase the time scale of
dynamical simulations by replacing the wusual
sequential methods of molecular dynamics by parallel
implementation of forward in time integrations. These
methods have the potential to utilize information from
a less precise physical model simulation to accelerate
|, the performance of complex models (e.g., accelerate the
| Step=500 MD performance of high level 1st principle methods).
(ii) The development of sampling methods that would
support the efficient exploration of complex many-

body potential landscapes.
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Figure 2. Sampling of the Meuller

surface diffusion model. Note that  Tq facilitate the efficient exploration of phase space
th? 'reaction paths and the three e fipgt principles simulations we are pursuing a
minima have been sampled by 500 hree- d h. (i) We are developing new
steps of our algorithm. three pr.ong.e ?pproacl piis
parallel in time integration methods[2]. These methods
utilize information from a less precise physical model to accelerate the performance of
complex models. These methods work well across low cost networks and they can be used
to expand scaling of simulations with limited scaling. Further, we will investigate new time-
parallelization schemes that are particularly designed to resolve the multiple time-scales in
a hierarchal fashion as in multigrid solvers. (ii) We are developing sampling methods that
support the efficient exploration of complex many-body potential landscapes. Promising
classes of techniques that bias the process by replicating walkers making progress and
discontinuing walkers that do not are being developed (Fig.2). (iii) We are pursuing
dimensional reduction and uncertainty quantification methods, such as principal
component analysis/principal orthogonal decomposition and machine-learning techniques
to extract reliable order parameters for free energy simulations and rate determination.
New “event driven” parallel programming models that efficiently create and destroy
terascale/petascale simulations will be used to schedule the collection of simulations
resulting from (i)-(iii). These tools will be applied to BES Geochemical related problems
(e.g., processes at defected transition/actinide metal oxide surfaces and CO: acidity in
nanohydration environments).
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[2] Eric ]. Bylaska, Jonathan Q. Weare, and John H. Weare. "Extending molecular simulation
time scales: Parallel in time integrations for high-level quantum chemistry and complex
force representations.” The Journal of Chemical Physics 139 (2013): 074114.

10.2.2.2 Codes and Algorithms

This project contains within it a subtask that emphasizes the development of new
computational tools for first-principle, parameter-free simulations of complex geochemical
processes with application to metal ion and surface hydration. These new computational
capabilities have been added to NWChem, allowing such capabilities to be accessed and
used by the wider geochemical and scientific community.

NWChem: Delivering High-Performance Computational Chemistry

NWChem aims to provide its users with computational chemistry tools that are scalable
both in their ability to treat large scientific computational chemistry problems efficiently,
and in their use of available parallel computing resources from high-performance parallel
supercomputers to conventional workstation clusters.

NWChem software can handle

¢ Biomolecules, nanostructures, and solid-state

¢ From quantum to classical, and all combinations
e Ground and excited-states

¢ Gaussian basis functions or plane-waves

e Scaling from one to thousands of processors

¢ Properties and relativistic effects

NWChem is actively developed by a consortium of developers and maintained by the EMSL
(www.emsl.pnl.gov) located at the Pacific Northwest National Laboratory (PNNL) in
Washington State. Researchers interested in contributing to NWChem should review the
Developers page. The code is distributed as open-source under the terms of the Educational
Community License version 2.0 (ECL 2.0).

The current version of NWChem is version 6.3.

The NWChem development strategy is focused on providing new and essential scientific
capabilities to its users in the areas of kinetics and dynamics of chemical transformations,
chemistry at interfaces and in the condensed phase, and enabling innovative and integrated

research at EMSL. At the same time continued development is needed to enable NWChem to
effectively utilize architectures of tens of Petaflops and beyond.

10.2.3 HPC Resources Used Today

10.2.3.1 Computational Hours

In 2013, we used 2.2M core hours on the Hopper computer system.
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10.2.3.2 Parallelism

A typical simulation on this project will use between 240 and 1,200 cores. Our primary
codes that we use are the ab initio molecular dynamics and band structure functionality
contained in NWChem. This code has been demonstrated to run to at least 100K cores at
NERSC3.

A very conservative number of cores per job is used because the amount of core hours
available to the project is limited.

The project does not currently run high throughput jobs at NERSC. However, we anticipate
some parts of the project, e.g., ab initio thermodynamics methods used by A. Chaka, will run
these types of jobs in the next few years. In addition, we are also running more advanced
free energy sampling methods in combination with ab initio molecular dynamics and
molecular dynamics that will require multiple instances running at the same time.

Predictive molecular simulations with today’s computational molecular methods are
beyond strong scaling (“Strong scaling hard?”) because as the system size becomes larger
the time spanned by the simulation needs to be longer to adequately sample the system.

10.2.3.3 Scratch Data

Our ab initio molecular dynamic simulations typically use 1-10 GB per run.

10.2.3.4 Shared Data
The project did not have a NERSC project directory in 2013.

10.2.3.5 Archival Data Storage

Up to a 1 Petabyte of data has been stored in 2013 on the archives located at NERSC and
EMSL at PNNL from simulations at NERSC. (NOTE: NERSC repo mp119 had less than 1 TB
stored in the NERSC archival storage system in 2013.)

10.2.4 HPC Requirements in 2017

10.2.4.1 Computational Hours Needed

We anticipate that we will need at least a factor of 10 increase in core hours from 2013 to
2017, primarily to run new types of free energy and parallel in time simulations.

10.2.4.2 Parallelism

We anticipate that we will need at least a factor of 10 increase in the number of cores used
concurrently in 2017 vs. 2013 (i.e. 2,400 to 12,000 cores). We have already developed
algorithms that efficiently scale to 100,000 cores using non-trivial parallelization [3]. In
addition, it is expected that future simulations will make extensive use of methods that can
be trivially parallelized such as single sweep free energy methods [4] and parallel in time
simulations [5],

3 http: //www.nwchem-
sw.org/index.php/Benchmarks#Parallel_performance_of Ab_initio_Molecular_Dynamics_using plane_waves
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We anticipate that our ab initio molecular dynamics codes will be demonstrated to run on
over 500K cores at NERSC in 2017. Fault tolerance issues and machine sizes primarily limit
the scaling of the current ab initio molecular dynamics codes. Performance analyses of our
current algorithms suggest that they will scale to 1M cores [3].

[3] http://www.nwchem-sw.org/index.php/Benchmarks.

[4] Luca Maragliano, Eric Vanden-Eijnden, “Single-Sweep Methods for Free Energy
Calculations”, http://arxiv.org/abs/0712.2531, (2007).

[5] Eric ]J. Bylaska, et al. "Hard scaling challenges for ab initio molecular dynamics
capabilities in NWChem: Using 100,000 CPUs per second." Journal of Physics: Conference
Series. Vol. 180. No. 1. IOP Publishing, 2009; Eric ]. Bylaska, et al. "Parallel implementation of
G-point pseudopotential plane-wave DFT with exact exchange." Journal of Computational
Chemistry 32.1 (2011): 54-69.

10.2.4.3 1/0

In 2017 our ab initio molecular dynamic simulations typically read and write a modest 1-50
GB per run. At a rate of 1Gb/s this suggests a reasonable bandwidth of <100 GB/s for
parallel I/0.

10.2.4.4 Scratch Data

In 2017 our ab initio molecular dynamic simulations typically use 1-50 GB per run. The
increase in storage from 2013 is the result of running larger simulations.

10.2.4.5 Shared Data
The project currently does not have a NERSC project directory.

10.2.4.6 Archival Data Storage

We will need 10s of petabytes of storage in 2017. The increase in storage from 2013 is the
result of running larger simulations. Currently, we store the majority of our data in the
archive at EMSL, PNNL. We hope to continue to use local storage at PNNL into 2017,
depending on network bandwidth. The majority of this data will be stored at the archive at
PNNL. Given the expected increases in computational power in the next five years we
estimate that a typical electronic structure simulation in 2017 will use between 2-100
terabytes to store the wavefunctions (e.g., 2,048 orbitals with a 512”3 grid — 2.2 terabytes
for O(N”3) algorithm, 16K orbitals with 2048”3 grid — 263 terabytes for O(N"2)
algorithm). The major bottleneck limiting the systems sizes in our electronic structure
simulations is that the computational cost scales as O(N”3) where N=number of atoms. Itis
expected in the next five years that the basic algorithms used in our electronic structure
algorithms will transform from being O(N”3) to O(N”2)-O(N).

10.2.4.7 Memory Required

We anticipate that our ab initio molecular dynamics and band structure codes will need at
least 1 Gb per core in 2017. For each simulation this will result in at least 1 Tb of aggregate
memory.
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10.2.4.8 Emerging Technologies and Programming Models

We have been porting our ab initio molecular dynamics and band structure codes as well as
other NWChem functionality to use GPUs and MICs. We anticipate that the port to the
Knights Corner MIC coprocessor using the offloading model will be finished in 2014. We
also anticipate that further developments targeted towards the Knights Landing processors
contained in the next NERSC system, Cori, will take continue to 2015-2016.

In addition to these hardware-driven changes to programs, we also starting to use more
flexible event driven programming models, such as run-time systems like CometCloud (M.
Parashar, Rutgers), that will allow the efficient scheduling of the creation and destruction of
large numbers of (terascale/petascale) simulations resulting from advanced free energy
and parallel in time simulations. NERSC should be working with their users and computer
scientists who are using event driven programming models to make sure that these new
classes of simulations will be able to run on NERSC computers.
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10.2.4.9 Software Applications and Tools

NWChem and our group’s various molecular dynamics and electronic structure programs
are required. In addition, we need C, C++, Fortran, Python compilers and interpreters,
BLAS, LAPACK, FFT, and math libraries, as well as MPI, Global Array and possibly UPC
programming models. Also, new types of event driven programming models, like
CometCloud.
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10.2.4.10 HPC Services

We would like NERSC to support complex simulations with multiple instances that may be

running across multiple sites (e.g., Figure 3).

10.2.4.11 Data Intensive Needs

The current HPSS system currently meets our needs. Larger quotas on user disk space
would be helpful for compiling and maintaining large software installations like NWChem.

10.2.4.12 Requirements Summary

Used at NERSC Needed at NERSC

in 2013 in 2017
Computational Hours 2.2 M 22M
Typical number of cores* used for 240-1,200 2,400-12,000
production runs
Maximum number of cores* that can be 100K 500K
used for production runs
Data read and written per run 1-10 GB 1-50 GB
Maximum I/0 bandwidth 1 GB/sec 100 GB/sec
Percent of runtime for 1/0 <1% <1%
Scratch File System space <1TB <1TB
Shared filesystem space 0TB 1PB
Archival data 449 GB 10 PB
Memory per node 2GB 2-4 GB
Aggregate memory 1TB 10 TB

* “Conventional” cores
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10.3 Direct Numerical Simulation of Poisson-Nernst-Planck
Equation in Charged Clays

Principal Investigator: Carl Steefel (Lawrence Berkeley National Laboratory)
Additional Worksheet Author: David Trebotich (Lawrence Berkeley National Laboratory)
NERSC Repositories: m1516; m1792 (PI: Trebotich via ASCR)

10.3.1 Project Description

10.3.1.1 Overview and Context

Engineered clay barriers have remarkable macro-scale properties such as high swelling
pressure (Goncalves et al., 2007), very low permeability (Mammar et al, 2001), semi-
permeable membrane properties (Malusis et al, 2003), and a strong coupling between
geochemical, mechanical, and osmotic properties (Malusis and Shackelford, 2004;
Gongalves et al,, 2007). These properties are thought to arise from the distinct geochemical,
transport, and mechanical properties of the interlayer nanopores of swelling clay minerals
such as Na-montmorillonite and other smectites (Goncalves et al., 2007). This makes them
ideal as a backfill for nuclear waste repositories, which is an important reason why the U.S.
Department of Energy is interested in their behavior. The need to understand the behavior
of clay-rich rock is also important for the problem of shale gas, since shales include a high
proportion of clay in their mineralogical makeup.

In compacted smectite-rich media, most of the pore space is located in slit-shaped interlayer
nanopores with the width of a few statistical water monolayers (Kozaki et al., 2001; Bourg
et al.,, 2006). The complex microstructure of these clay barriers (Cebula et al., 1979; Melkior
et al,, 2009) can be approximated with a conceptual model on which all pores are identical
slit-shaped pores between parallel negatively-charged smectite surfaces. With this model,
the width of the interlayer pores can be derived from the dry bulk density of the smectite,
and properties such as the anion exclusion volume or the swelling pressure of the clay
barrier can be predicted by solving the Poisson-Boltzmann equation in the space between
the parallel, negatively charged clay particles (Gongalves et al., 2007; Tachi et al., 2010).
Solving the Poisson-Boltzmann equation, however, is not a minor exercise carried out in the
context of a general multicomponent framework, in addition to requiring a fine
discretization to capture the chemical and electrostatic gradients in the vicinity of the
charged clay surfaces. This is why we are also pursuing a mean electrostatic approach,
which makes it easier to consider larger length scales for transport (e.g., Tournassat and
Appelo, 2011). The Poisson-Boltzmann approach, or even the Mean Electrostatic (or
Donnan equilibrium approach) that is based on it, however, potentially provides a more
mechanistic treatment of swelling pressure and anion exclusion than is possible with the
largely empirical approaches employed by Gens (2010) and Guimaraes et al (2013).

In this work, we focus on developing a conceptual model and applying it to the self-diffusion
of water and “hard” acids and bases (alkali metals, chloride). To develop our model, we
apply a combination of micro-continuum scale models based on the Poisson-Boltzmann
(PB) and Poisson-Nernst-Planck (PNP) equations to elucidate the coupling between EDL
phenomena and molecular diffusion in clay nanopores. Specifically, we propose to use the
Poisson-Boltzmann equation, and the Mean Electrostatic Model based on it, to develop
mechanistic descriptions of clay swelling pressure. Rather than being empirically based on
cation exchange capacity (which incorporates both inner sphere and outer sphere sorption,
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as well as Electrical Double Layer (EDL ions), this will consider the overlap of electrical
double layers in the context of Stern layer (inner sphere) sorption.

Year | Problem | Domain | Grid- Spatial Problem HPC Problem Data
dimen- size points | resolution time scale | resources | DOF storage
sion per plot

file

2013 | 2D 1m 2B 0(1 um) O(hours) | 50M 25 variables | 1TB

hours
3D lcm 2B 0(1 um) O(minute | 100M 25 variables | 1TB
s) hours
2017 | 2D 10cm 20B 0(1 nm) O(hours) | 500M 5 variables 10TB
hours
3D lcm 20B 0(1 nm) O(minute | 1Bhours | 5 variables 10TB
s)

10.3.1.2 Scientific Objectives for 2017

The primary objective of the nano-continuum modelling work will be to develop a Poisson-
Boltzmann description of the electrical double layer (EDL) within the context of a
multicomponent reactive transport code that accounts for Nernst-Planck (electrochemical
migration) effects. The general multicomponent software framework of the Poisson-
Nernst-Planck (PNL) equations will be applied to the problem of compacted clays (used as
backfill for geological nuclear waste repositories) and clay-rich rocks like shale. We are not
aware of an implementation of the Poisson-Boltzmann equation in the context of a true
multicomponent reaction-diffusion solver, with the possible exception of the work by Leroy
et al (2006), although this development resulted in largely hard coded software. In
addition, they did not include a Nernst-Planck treatment of ion diffusion. The Poisson-
Nernst-Planck (PNP) equations will be calibrated based on molecular modelling and
laboratory diffusion experimental results. The PNP modelling results will be compared
with results from the Mean Electrostatic model.

Our plan is to bring the full capabilities of Chombo to bear on the problem, coupling it to
CrunchEDL to resolve both solute transport and electrostatic effects at the nanoscale. This
requires higher resolution than we have considered to date (nanometers), since the
electrical double layer (EDL) needs to be resolved near the charged clay surfaces. A typical
EDL thickness is on the order of nanometers.

10.3.2 Computational Strategies (now and in 2017)

10.3.2.1 Approach

Our current approach is two fold:

1) Micro-continuum modeling without the use of HPC to capture the diffusion of ions
through compacted clays (CrunchEDL). CrunchEDL has capabilities for both a Mean
Electrostatic (or Donnan Equilibrium) approach, and we have developed preliminary
capabilities for solving the Poisson-Boltzmann equation.
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2) Pore scale modeling without electrostatic effects based on a combination of the Chombo
Computational Fluid Dynamics (CFD), Embedded Boundary Methods (EB), and
Adaptive Mesh Refinement (AMR) that are coupled to the general purpose geochemical
simulator CrunchFlow. Chombo-Crunch, in contrast, currently does not handle the
electrostatic effects, but solves the Navier-Stokes equation together with molecular
diffusion and general (bio)geochemical reactions, resolving mineral-water interfaces at
high resolution.

3) In addition, we have a collaboration with an environmental firm AMPHOS to develop a
coupled model for flow, transport, and electrostatic effects in charged, compacted clays
based on integration of the codes CrunchEDL and Comsol. This CrunchEDL-Comsol
capability, however, will not scale past about 150 cores, but is useful as a prototype of
what we expect to do at the HPC level with the Chombo-CrunchEDL coupling described
below.

Our plan for 2017 is to bring the full capabilities of Chombo to bear on the problem,
coupling it to CrunchEDL to resolve both solute transport and electrostatic effects at the
nanoscale. This means solving the combination of the Poisson-Boltzmann equation and the
Nernst-Planck equation for lateral migration of ions through the clay. This requires higher
resolution than we have considered to date, since the electrical double layer (EDL) needs to
be resolved near the charged clay surfaces. We will then have a micro/nano-continuum
model that includes the possibility of both Navier-Stokes or Stokes flow and electrochemical
and ion transport through compacted clay. This will allow us to consider osmotically-
driven flow and swelling pressure in clays, as well as electrostatically modified molecular
diffusion.

10.3.2.2 Codes and Algorithms

* Chombo flow and transport solvers using adaptive, finite volume methods to treat
complex clay geometries.

* New algorithm for PNP equation based on high performance scalable elliptic solvers
in Chombo coupled to flow and transport.

* Coupled to CrunchEDL via operator splitting to include the Coulombic (electrostatic)
effects on transport and reaction in the compacted clays.

10.3.3 HPC Resources Used Today

10.3.3.1 Computational Hours

We used 103M at NERSC in 2013 using three repositories: m1792, which is an ALCC-
allocated ASCR project; m1411, an ERCAP-allocated ASCR project; and m1516, an ASCR
project allocated from the NERSC director's reserve. We will also use about 800M at ALCF
(Mira) as part of an ALCC award.

10.3.3.2 Parallelism

Today, our runs use 48,152-96,304 cores. The code has been run on up to 131,072 cores.
Weak scaling is most important for our project. Our sweet spot for load balancing is 1 grid
box per core. In 3D a grid box is 323 grid cells; in 2D, it is 2562. In order to perform strong
scaling on a transport problem in a realistic medium we would lose the sweet spot
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optimization, both in memory and performance. As it is, we scale very efficiently up to
128K cores in weak scaling studies. High-throughput computing is of no importance.

10.3.3.3 Scratch Data
We require about 80TB of scratch storage today.

10.3.3.4 Shared Data

m1792 has a project directory at NERSC used for file sharing between computational
mathematicians and applications scientists.

10.3.3.5 Archival Data Storage
The three repos combined used 744 TB of storage in the NERSC HPSS system in 2013.

10.3.4 HPC Requirements in 2017

10.3.4.1 Computational Hours Needed

We currently need about 100 M hours on a machine like Edison. In 2017, we could use 1B
hours on a new architecture machine (Trinity, NERSC 87). We have an INCITE proposal
currently under review for 2014 and we currently have an ALCC award. The primary factor
driving our increased requirement is the need to use much higher resolution (factor of
1000, nanoscale) for solving PNP equations in charged clays compared to current pore scale
simulations at microscale resolution.

10.3.4.2 Parallelism

We will probably use about 131,072 cores in production and we estimate being able to scale
to about 393,216.

We will probably need to have two jobs running concurrently —one for a benchmark blank
scaling run, one for a science production run.

10.3.4.3 1/0

A full series of 36-hour production runs dumping checkpoint and plot files in hdf5 format
every 100 timesteps will create about 1.5PB. Typically we run for 100,000 time steps for
steady state solutions at the pore scale. And each plot file is about 1TB, checkpoint is about
.5 TB.

Our I/0 generally consists of 1-TB plot files and 0.5-TB checkpoint files. We would be will
to devote no more than about 2% of the total runtime to I/0 (and it generally is about that

level now).

10.3.4.4 Scratch Data

We will need 100TB of scratch space in 2017. The primary driver for this is our need to do
runs using higher resolution.
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10.3.4.5 Shared Data

We will also need 100TB of project space in 2017. The primary driver for this is, again, our
need to do runs using higher resolution.

10.3.4.6 Archival Data Storage

We estimate having to archive 10 PB of data. The primary driver for this is, again, our need
to do runs using higher resolution.

10.3.4.7 Memory Required
We require 2GB per node.

10.3.4.8 Emerging Technologies and Programming Models

We are not currently thread safe. We will port our code to the new thread safe Chombo4
libraries.

10.3.4.9 Software Applications and Tools
We need PETSC and Vislt (or something comparable).

10.3.4.10 HPC Services

We will need consulting or account support and support for data analytics and visualization.

10.3.4.11 Time to Solution and Throughput

As mentioned above, we will need a large quota for scratch space in order to have an
efficient workflow for doing post-processing of a run, balanced with moving to archival
storage.

10.3.4.12 Data Intensive Needs

We are generally satisfied with NERSC's HPSS system but would like to see a speedup in
transfer rates. It currently takes several hours to move 1TB from scratch to HPSS using hsi.

We already have a data management plan in place now that includes archival storage.

10.3.4.13 Additional Comments

The most important factors for us are (wall)clock time and memory bandwidth. For
example, Edison is 2.5 times faster than Hopper for our code. We are memory bandwidth
limited.
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10.3.4.14 Requirements Summary

Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours 96 M 1,000 M

Typical number of cores* used for
production runs

49,152-96,304

131,072-393,216

Maximum number of cores* that can be 131,072 393,216
used for production runs

Data read and written per run 1,000 TB 10,000 TB
Percent of runtime for 1/0 <2% <2%
Scratch File System space 80 TB 100 TB
Shared filesystem space 2TB 100 TB
Archival data 744 TB 10,000 TB
Memory per node 2 GB 2GB

* “Conventional” cores
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10.4 Imaging and Calibration of Mantle Structure at Global and
Regional Scales Using Full-Waveform Seismic Tomography

Principal Investigator: Barbara Romanowicz (UC Berkeley)
Worksheet Author: Scott French (UC Berkeley)
NERSC Repository: m554

10.4.1 Summary and Scientific Objectives

Our current research is focused on imaging the interior of the earth at global and regional
scales using seismic waves. We aim to improve understanding of the interior structure of
the earth’s mantle and the dynamic processes that drive a broad range of observed
phenomena, including plate tectonics and hotspot volcanism. To achieve this goal, we
employ advanced methods that combine: (a) direct inversion of full seismic waveforms
(seismograms), allowing us to take advantage of the rich information content thereof; and
(b) numerical simulations of the seismic wavefield that accurately reflect the physics of
wave propagation in the real earth.

Full-waveform seismic inversion of this type is both computation and data intensive, and
would not be feasible without HPC and coupled data storage resources. While these
numerical simulation techniques are still quite new to global seismology, we are already
using millions of CPU core hours per year for production runs and expect this to only
increase. Further, we note that having a collocated high-performance scratch file system
available is very important, particularly for accommodating the large quantities of
intermediate data produced when processing simulation output in combination with the
observed seismograms (which together drive the underlying seismic-imaging optimization
problem).

10.4.2 Scientific Objectives for 2017

In the broadest sense, we do not expect our underlying scientific goals for 2017 to vary
sharply from those given in Section 9.4.1 - imaging of the earth’s interior using highly
accurate numerical simulations of the seismic wavefield. However, we expect that the
resolution of our imaging will increase considerably, coupled with more computationally
heavy modeling of higher-frequency seismic waves, allowing us to make more detailed
inferences regarding the interior dynamics of the earth. Indeed, our current research not
only reveals details of mantle structure never before seen, but also lays the groundwork for
future high-resolution imaging by providing a starting model that is well-constrained at
longer wavelengths.

10.4.3 Computational Strategies

10.4.3.1 Approach

Our work is focused on imaging the interior structure of the earth using full seismic
waveforms. This is an inverse problem, in which we seek a model of the earth that
accurately predicts the seismograms observed for real earthquakes. Our approach to
solving this problem involves simulating the propagation of seismic waves through the
earth for many (hundreds) of individual earthquakes using a high-order (“spectral”) finite
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element method. The results of these simulations are used to update our estimate of the
earth’s interior structure, and the process is repeated until convergence.

10.4.3.2 Codes and Algorithms

Our primary codes are spectral finite element method (SEM) solvers, employing an explicit
time stepping scheme and a matrix-free formulation, which are specialized for either global
or regional (continent) scale simulations, respectively (both are parallelized with MPI).
Other codes, which use a much smaller fraction of our total allocation, are responsible for
processing and assimilation of simulation output, namely: (a) calculation of partial
derivatives for updating our seismic model using normal-mode coupling theory
(MPI+OpenMP); and (b) optimization of the model, by combining our simulation output, the
observed waveform data, and the partial derivatives that relate the two (MPI+ScaLAPACK
for large-scale dense linear algebra).

10.4.4 HPC Resources Used Today

10.4.4.1 Computational Hours

We used 3 million hours at NERSC in 2013. NERSC is currently the only site where we have
significant resources available.

10.4.4.2 Parallelism

The finest unit of simulation for our SEM computations is the individual earthquake, which
typically requires only 150-300 compute cores. However, we have many earthquakes to
simulate (hundreds), and because there are no data dependencies between earthquake
simulations we routinely merge these computations into concurrent 2-3k core production
runs. Other codes described in Section 9.4.3.2 above need not be run on a per-earthquake
basis (instead processing simulation output from the entire set of earthquakes at once) and
typically use roughly 500 compute cores.

For the problem sizes relevant to our current research, which dictates the discretization of
our finite-element mesh, our SEM simulations would not scale well to larger core counts
than those listed above. Indeed, measurements of parallel efficiency, together with
turnaround time, guided those specific choices of core counts. However, as noted above,
these simulations can be aggregated into much larger production runs.

We do not use what would typically be termed a high-throughput computing mode (though
we do merge simulations, 10-20 depending on core count, into single production runs as
noted above).

For our project, the problem size (the finite-element mesh) is fixed, or is changed only very
rarely. Thus, strong scaling is more important.

10.4.4.3 Scratch Data

In general, we are able to comfortably stay below the current 5TB limit on Hopper local
scratch. In the final phase of each inversion iteration, where simulation output is consumed
and the model is updated, we can episodically approach 3-4TB of scratch utilization. We
approach similar utilization levels during experimental SEM simulations that require
heavier use of checkpointing, though these are rare. In addition, we occasionally use the
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global scratch file system to make simulation output available to the data transfer nodes,
but typically only for sets of files on the order of 100GB in size.

10.4.4.4 Shared Data

We currently use our project directory only lightly, storing <100 GB of shared data
(preprocessed seismic waveforms).

10.4.4.5 Archival Data Storage
We have approximately 100GB stored on the NERSC HPSS data archive now.

10.4.5 HPC Requirements in 2017

10.4.5.1 Computational Hours Needed

Given compute costs evaluated on current “conventional” machines, we anticipate a CY
2017 allocation request of at least 25M hours. This value represents a conservative lower
bound on the number of hours that will be required in order to meet our scientific goals and
remain productive in 2017 (see below). We do not currently plan to receive significant
allocations elsewhere.

The primary factor behind the growth in hours is the need to simulate higher-frequency
seismic waves in order to attain better resolution. This, in turn, necessitates a refined finite-
element mesh, which drives up the cost of each earthquake simulation (as approximately
frequencys3 for our particular application and configuration). Further, we anticipate that by
2017 we will have incorporated adjoint-state computations into our waveform inversion
approach, which will improve upon the waveform gradients currently approximated using
mode-coupling theory. This approach introduces an additional factor-of-two increase in the
number of simulations required and is currently under active development. Thus, assuming
3M-hour present-day resource needs, 21.5x increase in seismic wave frequency by 2017, an
overall 2x cost increase when using adjoint methods, and an additional 20% overhead due
to both simulation-output assimilation calculations and validation runs on future platforms,
we arrive at 25M hours minimum allocation size.

10.4.5.2 Parallelism

We anticipate that our primary codes (the SEM solvers) will typically use 300-500 compute
cores per simulation. Our simulation output assimilation codes will likely use somewhere in
the 3,000 - 10,000 core range, but this is not well constrained at the moment (it depends on
future choices of parameterization for our seismic model, which is subject to change).

We anticipate the above values for the SEM to again be near the optimal tradeoff between
parallel efficiency and run duration by analogy with the current per-core workload (though
this weak-scaling argument clearly ignores changes in scaling behavior on future
platforms).

We will typically have more than one job running concurrently because our simulations will
remain “discretized” by earthquake, with hundreds of simulations to perform. However,
there are no dependencies between these runs, so they can be scheduled individually or can
trivially be merged into larger production runs, depending upon available resources and
[/0 load. The latter has not currently been found to be a problem, though future simulations
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may require heavier checkpointing - particularly the adjoint-state computations referred to
in Section 5.1, which accumulate checkpoint snapshots as the run progresses for
subsequent reconstruction of the wavefield in reversed time.

We do not anticipate adopting a high-throughput computing mode.

10.4.5.3 1/0

We anticipate that checkpointing will occupy on the order of 40-50 GB for “typical”
simulations (which use checkpoints only for crash recovery) and at least 500 GB for adjoint-
state simulations (which require time histories of checkpoints). Specialized (rare) adjoint
simulations may require up to 1 TB of scratch storage for these purposes. In addition, we
expect the computations that process and assimilate simulation output to produce on the
order of 10-20 TB of intermediate data (discretized in files approximately 0.5-1 TB in size).

Aggregate 1/0 bandwidth for our current large production runs on Hopper (multiple SEM
simulations occupying up to 3,000 CPU cores) typically peaks near 20 GB/s and is
associated with distributed read of files produced by our finite-element mesher. We
anticipate these files to grow in size by a least 6x in simulations for CY 2017. Assuming the
same total number of CPU cores per run (an underestimate) and holding the current read-
time fixed leads to a lower-bound estimate of 120 GB/s. For adjoint-state SEM simulations
producing or consuming large volumes of checkpoint data, we know that access will occur
in small chunks, which we expect to be similar in size to the mesh files, suggesting similar
[/0 requirements. Assimilation of simulation output should produces files of 0.5-1TB in
size, but occurs so rarely that it does not factor significantly into our bandwidth
requirements (i.e. we are willing to trade off with read/write time).

For the majority of our SEM simulations, we do not anticipate I/0 time to be a significant
fraction of our total run times, since they are characterized by infrequent, distributed read
or write of 10’s of GB of data. Thus, anything larger than a few percent, and certainly over
5%, would seem excessively large, with the exception of our simulation assimilation codes
(for these, our expectations of percentage runtime will have to be relaxed).

10.4.5.4 Scratch Data

Combining the estimated lower bound on checkpoint footprint for adjoint-state simulations
of 500 GB (Section 5.3), with a reasonable estimate of 20 simulations in some stage of
completion at once (possibly aggregated into fewer runs), yields an estimate of 10 TB+ of
actively occupied scratch space or 12 TB+ with a modest 20% overdesign. Solution output
(seismic waveforms) will likely remain quite small (<1GB per simulation). Intermediate
data produced in assimilating simulation output is anticipated to peak on the order of 10-20
TB (Section 5.3) at which point the checkpoint files will already have been removed. This
estimate does not include the specialized large-1/0 SEM simulations (1 TB of checkpoints)
referred to above, as it is not clear at this time how to often these will occur (though likely
not often).

Growth in scratch space is primarily due to the checkpoint files produced by our SEM runs
and the intermediate data produced during solution assimilation, both of which grow as our
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mesh is refined at higher frequencies. The former also grows with heavier use of
checkpointing in the adjoint-state SEM simulations.

10.4.5.5 Shared Data

We have a small data store in the NERSC global file system, /project. We do not anticipate
significantly expanding usage there.

10.4.5.6 Archival Data Storage

We do not anticipate our on-site archival storage needs to grow significantly - likely only to
a 500 GB or less.

10.4.5.7 Memory Required

We anticipate our SEM solvers to continue to require on the order of 1-2GB per
process/core. Thus, any per-node memory configuration satisfying this requirement should
be acceptable (albeit, an assessment limited to HPC architectures similar to present-day
“conventional” ones). Also, though it represents a significantly smaller fraction of our
allocation usage, the MPI/OpenMP parallelized partial-derivative estimation and solution
assimilation code (which assembles large, dense matrices for later factorization) would
benefit from having from more memory per node than is currently possible on Hopper - on
the order of 100 GB or more (potentially on designated “large-memory” nodes).

10.4.5.8 Emerging Technologies and Programming Models

Our codes are not currently ready for advanced architectures. There has been some success
in the seismic-modeling community on porting these types of matrix-free finite element
calculations to heterogeneous environments - specifically those hosting GPUs (currently in
development for ORNL Titan, in particular). We are currently investigating how the
structure of our particular SEM implementation would lend itself to such an effort (perhaps
merging with the community code when GPU support is fully integrated in the latter), and
assessing how community experiences in porting to GPUs will also inform efforts to support
other architectures - e.g. Intel MICs). However, guidance from NERSC as to what hardware
technologies to anticipate and, associated with that, what level of generality will be
supported at the compiler level (e.g. CUDA Fortran, OpenACC, etc.), would be valuable.

10.4.5.9 Software Applications and Tools

Our primary SEM codes are written in Fortran 90, while the others are in a mix of Fortran
90, C (ANSI and C99), and C++. This is unlikely to change in the next 4 years. Our codes are
largely parallelized with MPI and/or OpenMP, but also more recently incorporate UPC-like
PGAS extensions to C++ (collectively known as UPC++, with similar dependencies to UPC -
e.g. GASNet). We expect this to change to some degree as NERSC adopts new technologies
for heterogeneous computing (hopefully exposed at a more abstract, portable level - e.g.
directive-based as opposed to writing pure CUDA). For our languages of choice, we have the
most experience with the PGl and GNU compilers and would like to see them remain
available on future NERSC resources. Our library needs are rather narrow and we again do
not expect them to change: an optimized BLAS and FFT, as well as ScaLAPACK. Finally, we
anticipate that we will continue to perform model analysis offsite (though processing and
assimilation of solution output will remain onsite).
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10.4.5.10 HPC Services

Although it is difficult to say definitively, we anticipate that assistance from NERSC
consulting will be valuable in further tuning our codes for many-core or heterogeneous
computing environments (assuming that we will already have a working production
implementation thereof in 4 years).

10.4.5.11 Time to Solution and Throughput

We do not anticipate any special needs in this regard. However, as is the case now, our
workload will be episodic in nature - we run many (hundreds) of simulations, assimilate
the results by incrementally updating our seismic model, and repeat until convergence.
These iterations can be delayed by extensive offsite analysis of the model, as well as efforts
to expand our dataset to improve model resolution. This workload runs somewhat contrary
to the mode of continuous simulation often encouraged by the allocation reduction schedule
(though we have not recently incurred such reductions).

10.4.5.12 Data Intensive Needs

Given the storage needs estimated above, it would seem that our current workflow would
scale to the problem sizes we anticipate for CY 2017 with fairly modest (2-4x) scratch quota
increases.

We are satisfied with NERSC's HPSS system, though we are not heavy users of HPSS.

Because (a) both our data and the results of our simulations (seismic waveforms) occupy so
little space, and (b) we are a single research group performing the majority of our analyses
offsite, we do not have a formal data management plan at NERSC. That said, we do keep
careful records of data quality and provenance, and are investigating further formalizing
these efforts. At present, we do store simulation output for archival purposes in HPSS.

10.4.5.13 Additional Comments

Two concerns that we would like to draw attention to, as noted above, are: (a) the desire for
guidance in planning which technologies for many-core / heterogeneous computing to have
in mind as we adapt our codes; and (b) ensuring that the irregular, episodic nature of our
workflow is understood from an allocation management perspective.

For our use case, in which we are managing many production simulations in the low-to-mid
hundreds of CPU cores in size - thousands of simulations per year by 2017 - one of the most
import features of an HPC system is the ability to predict and reason about wall-clock run
duration. Thus, we are particularly interested in features that mitigate nondeterministic
variation in run duration, including the availability of a high-performance scratch file
system providing uniform high I/0 bandwidth and, to a lesser extent for our use case, a
scheduler that considers (interconnect) locality when mapping tasks to compute nodes. The
former is particularly important for our adjoint-state SEM simulations, while the latter we
expect not to be a significant factor on future systems (an expectation supported by recent
benchmarks reported for NERSC Edison). Our run-management abilities would be further
aided by functionality for monitoring node health, memory availability, [/O congestion, etc.
at runtime, possibly allowing our runs to save state and cleanly shut down in unexpected
circumstances. NERSC does an excellent job providing a uniform and high-availability
environment for computations, but with the large number of runs that we anticipate for
2017, we foresee runtime monitoring becoming a useful feature if it is available.
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Aside from maintaining highly reliable and available HPC systems, one of the most useful
services provided by NERSC is their extensive documentation of best practices for a wide
range of topics (e.g., compilation and optimization, runtime tuning, I0 considerations, etc.).
Further, the inferences drawn in these documents are often backed up with empirical

benchmarks, increasing their value for the specific systems considered.

10.4.5.14 Requirements Summary

Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours 3M 25M
Typical number of cores* used for SEM: 150-300 SEM: 300-500
production runs
Other: 500 Other: 3K-10K

Maximum number of cores* that can be
used for production runs

Same (though can
be aggregated)

Same (though can
be aggregated)

Data read and written per run

SEM: 30 GB

Other: 100 GB

SEM: 0.5 TB

Other: 0.5-1 TB

Maximum I/0 bandwidth 20 GB/sec 120 GB/s
(aggregate) (approx.)
Percent of runtime for I/0 <<5% <<5%
Scratch File System space ~0.1TB ~0.5TB
Archival Storage 81 GB 500 GB
Shared filesystem space 49 GB 100 GB
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11 Scientific User Facility Case Studies

11.1 Introduction

NERSC is playing an ever-increasing role in the science produced by users of the BES user
facilities that offer unique and powerful technical tools for a wide variety of 21st-century
energy-related scientific disciplines. NERSC involvement in research associated with user
facilities comes about in two ways. First, the volume of data being transferred to NERSC has
increased dramatically, as experimental facilities are inundated with large quantities of
scientific data. Over the past few years, more data has been transferred to NERSC than away
from NERSC - an unprecedented paradigm shift for a supercomputing center. Scientists
expect rapid and simplified access to the data and NERSC computational scientists, along
with ESnet, have helped solve challenges in extreme data organization, distribution, long-
term storage and real-time computational analysis. Second, there has been increasing close
interplay between theory and experiment, as scientists use simulation to rapidly help
understand results obtained at X-ray and neutron sources.

The following case study is characteristic of the needs of large BES light and neutron source
user facilities. NERSC is also presently engaged in test collaborations with beamline
scientists at the Stanford Synchrotron Radiation Lightsource (SSRL), a part of the SLAC
National Accelerator Laboratory (SLAC); the Linac Coherent Light Source (LCLS), which is
also located at SLAC; the Advanced Photon Source (APS) at Argonne National Laboratory;
and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory,
which is one of the most prolific scientific user facilities in the world.
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11.2 Advanced Light Source

Principal Investigator: Michael Banda (Lawrence Berkeley National Laboratory)
NERSC Repository: ALS

11.2.1 Project Description

11.2.1.1 Overview and Context

The Advanced Light Source (ALS) is a national user facility open to scientists from academic,
industrial, and government laboratories. The ALS is a third-generation synchrotron
radiation source optimized for high brightness at soft x-ray and ultraviolet photon energies
using undulator and bend magnet sources. It also provides outstanding performance in the
hard x-ray region, using wiggler and superconducting bend-magnet sources, to serve the
needs for complementary tools at a single facility and the user community needs for
capacity. There are 37 user beam lines at ALS that support about 2,000 users per year who
study materials for basic research, energy sciences and drug design. Modern experiments
and sources increasingly require very high data rate detector and data acquisition systems.
These systems can rapidly produce data files too large for users to copy onto portable
storage devices. Further, those files will be too large to move by conventional methods to
the users’ home institutions.

This facility allocation is intended to support the data and computational needs of a diverse
user community. It does not have a singular scientific focus. This ALS allocation will explore
high performance data movement storage and analysis for the ALS users. Such a scientific
data and analysis portal will be applicable to other photon and neutron user facilities. In
conjunction, simulations and real time data analysis to inform beam and end station
parameters will be explored. Finally, the ALS allocation will produce advanced analysis
applications that take advantage of the high performance computational and storage
resources at NERSC. All of the tools developed at ALS/NERSC will be available to the larger
light source community.

11.2.1.2 Scientific Objectives for 2017

ALS Users are asking for faster detectors, but are not prepared for the consequences
because data rates and volumes overwhelm them. Most users do not have the background
to use high performance computers. The ALS/NERSC data portal project allows users to
take advantage of high performance computers to overcome their data intensive challenges.

Scientific challenges addressed by light sources are diverse. The science questions come
from a wide variety of fields, including biology, material science, physics, earth science and
archeology. While the science challenges are diverse the techniques are connected by
common data themes (Real Space, Reciprocal Space, and Spectroscopy). Facility users are
routinely able to generate tens of thousands to hundreds of thousands of images in a few
days of running. Using current analysis techniques, software, and resources only a small
percentage of usable data are analyzed.

Recent improvements in detector resolution and speed and in source luminosity are
yielding unprecedented data rates at national light sources supported by the Scientific User
Facilities Division of BES. Over 2 PB per year are expected from some facilities in 2014.
Those data rates already exceed the capabilities of data analysis approaches and computing
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resources utilized in the past, and will continue to outpace Moore's law scaling for the
foreseeable future. The consensus within light source scientific user communities is that
scientific insight and discovery at BES facilities are now being limited by computational and
computing capabilities much more than by detector or accelerator technology.

The scientific data portal project at ALS is designed to develop a suite of tools to provide
ALS users - to leading edge data management of scale: data analysis and simulation tools
that are beyond the typical resources of a facility user. This effort involves collaboration at
Berkeley Lab with NERSC, ESnet, and computational scientists. The portal project has
achieved a significant milestone. It has demonstrated the ability to seamlessly move large
data sets from one beamline to the NERSC computing environment where they can be
stored and analyzed by users. The ALS does not have the local resources to handle data of
scale. When complete, the automated portal will allow ALS users to manage and share their
experimental and simulation data of scale, analyze those experimental data, and view real
time results during their ALS beam times. By 2017 we expect that several high data rate
beamlines will be interacting with NERSC. We also expect to pilot the ability of NERSC to
extend the science portal to beamlines from other BES user facilities.

This collaborative effort of Office of Science resources (BES and ASCR) will revolutionize the
user experience at BES facilities and begin to break down the barrier to scientific discovery
imposed by the challenge of large data sets.

11.2.2 Computational Strategies (now and in 2017)

11.2.2.1 Approach

The problems addressed by modern day light sources are extremely diverse. The science
questions range from biology, material science, physics to earth science and archeology.
While the science challenges are diverse the techniques are connected by common themes.

Real Space: X-ray imaging beamlines have been generating TBs of raw image data per
month, and with the development of new and faster cameras data rates will double or triple
in the near future. As the data rate and volume have increased, the need for on-site analysis
has increase. The imaging data analysis involves reconstruction of large 3D images,
segmentation of the images into sub-regions, discrimination of multiphase solid materials,
identification of microstructures, calculation of statistical correlation functions (e.g. surface,
pore-size) and extraction of channel networks. As part of the analysis, visual
representations of structures are often mandatory. For example, during modeling of
structures, a theoretical optimum may not lead to the optimum problem solution, and
scientific visualization tools can be indispensable in such cases. The amount of data
demands both automation and re-factorization of algorithms into software that can use
multiple cores, several nodes to solve a problem that we can characterize as a high
performance analytics (data centric). Issues of disk 1/0, efficient threading and distributed
communications will play a major role on scaling algorithms to provide the necessary tools.

Reciprocal Space: Just as in imaging beamline, scattering beamlines have seen a revolution
with respect to flux and detectors. High brilliance beams, efficient x-ray focusing optics and
fast 2D area detector technology allow the collection of thousands of diffraction patterns
occupying terabytes of disk space. The need for real time analysis also stems from the need
to modify experiments on the fly when the next action depends on the outcome of the
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previous scan. Additional computational needs for the light sources involve the integration
of modeling and simulation as tools accessible to the users in real time. Clever visualization
tools are also needed for displaying multidimensional data in a practical way. Techniques
such as coherent diffractive imaging, nano-crystallography and ptychography under
development at light sources are also the fruit of advances in reconstruction techniques. In
these techniques, the need for algorithms capable of solving large scale ill-conditioned,
underdetermined, noisy inverse problems has never been so clear. The vast majority of data
in diffractive imaging is almost never looked at. Reconstructions fail, often.

Spectroscopy: The data rates for spectroscopy are traditionally not as high as the previous
described techniques, but just as before it relies very heavy on usually very complicated
analysis algorithms and simulations.

Computational Tools: In each of these light source data themes, domain scientists are
routinely able to generate 10,000's to 100,000's of images in a few days of running. Such
data volumes cannot be analyzed individually, but rather must rely upon automated
methods that translate Materials Science Descriptions to input for modeling and simulation,
and that quantitatively compare output of simulation with beam line data. To maximize
both the functionality and robustness of these kinds of end-to-end analysis systems, a
community-wide, open-source project must be initiated, and nurtured at the agency level
(i.e., DOE-BES). These same kind of large scale, automated, and customized systems have
been developed and deployed for other science communities. Although none are directly
adoptable by BES light source scientists, many principles, approaches, and lessons learned
are directly applicable. These tools must possess the following essential features in order
for them to be widely adopted in the materials science community.

1. Ease-of-use and extensibility: These features both ensure widespread adoption within
a scientific community and maximize the reusability of software components developed by
research team by others. As an example, a graphical modeling interface similar to those
used by solids modeling programs would provide researchers a natural method of
describing the microscopic structure of material samples, and a common format for input to
simulations.

2. Deployment of advanced algorithms using state-of-the-art computer hardware: In
order to develop the fastest algorithms and robust codes, we need to exploit and leverage
the resources provided by the ASCR office, including the expertise in Applied Math,
Computer Science and the High Performance Facilities, such as NERSC. In particular,
parallelization of these algorithms on multiple CPUs, graphical processor units (GPUs), and
hybrid CPU/GPU multicore architectures will dramatically decrease the analysis time by
more than several orders of magnitude while simultaneously permitting larger data sets to
be treated.

3. Quantitative, interactive visualization: Visualization tools which allow quantitative
comparison of simulation and experiment, including whole-image comparison or feature
extraction, will aid both large-scale processing, and improve the quantity, quality, and
reproducibility of scientific results.

4. Leveraging of advanced computer technologies: As enabling computer technologies

(such as data I/0 and formats, ontologies, FFT libraries, etc.) and architectures (such as
GPUs, multi-core, or heterogeneous architectures) evolve and improve, a common
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framework must allow for graceful evolution to accommodate and take advantage of the
latest improvements while insulating users from the underlying details. This provides two
advantages: The perturbative effects of such changes to scientists' research are minimized
and the advantages are more quickly and widely available.

11.2.2.2 Codes and Algorithms

Code Name: Fiji
Description: Tomographic reconstruction
Machines: Edison, Hopper, Carver
Languages: C, C++, Java, Python, shell script
Libraries: HDF
Performance Limits: [/0-disk speed input

Code Name: GridRec
Description: Tomographic reconstruction using gridding method
Numerical Techniques: Spectral Methods
Machines: Hopper, Carver
Languages: C, C++
Libraries: FFTW, HDF

Code Name: HipGISAXS

Description: A massively-parallel, high-performance GISAXS simulation code.
Includes optimization algorithms and reverse Monte Carlo algorithm to solve the
inverse problems (structure fitting).

Numerical Techniques: Spectral Methods, Structured Grids

Machines: Edison, Hopper, Dirac

Planned Processors: 1- 65,536+

Languages C++, Open MP

Code Name: ImageRec
Description: Tomographic reconstruction using filtered back projection method
Numerical Techniques: Spectral Methods
Machines: Hopper, Carver
Planned Processors: 2-63
Languages: C language
Libraries: FFTW, HDF

Code Name: MBIR

Description: Model-Based Image Reconstruction, First a model is developed for
image formation in tomography along with a prior model to formulate the
tomographic reconstruction as a MAP estimation problem. The formulation also
accounts for certain missing measurements like the transmission measurement,
offsets and noise variance, treating them as nuisance parameters in the MAP
estimation framework. We adapt the Iterative Coordinate Descent (ICD)
algorithm to our application to develop an efficient method to minimize the
corresponding MAP cost function. Reconstructions of simulated as well as
experimental data sets, show results that are superior to FBP and SIRT
reconstructions, significantly suppressing artifacts and enhancing contrast.
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Numerical Techniques: Sparse LE
Machines: Hopper, Carver
Planned Processors: 2-63,64-511
Languages: C, C++

Libraries: FFTW, HDF,MPI

Code Name: QuantCT
Description: Semi-automatic image filtering and segmentation
Machines: Hopper, Carver
Planned Processors: 1 (serial), 2-63
Languages: C, Java

Code Name; XMAScluster
Description: Processing of synchrotron Laue x-ray micro-diffraction for grain
orientation and strain/stress mapping.
Planned Processors: 512-4095
Number Serial Jobs: 1000
Languages: Fortran90
Libraries: LAPACK, custom

11.2.3 HPC Resources Used Today

11.2.3.1 Computational Hours

In 2012, the ALS Repo had 1,000,000 hours awarded but ended up using 2,00,000 hours.
This was the first year of the ALS facility allocation. In 2013 the ALS facility allocation was
2,000,000 and it used over 4,000,000 hours. These early numbers do not well represent a
production baseline. There are no other HPC compute or storage resources available to ALS.

11.2.3.2 Dataand|/O

Scratch (temporary) space: ALS current usage of Scratch space is minimal, and solely due
to individuals' usage.

Permanent (can be shared, NERSC Global Filesystem /project): ALS real-time data
analysis writes to the NERSC NGF /project space. We routinely write ~35-40 TB per month,
of which ~5 TB per month are considered permanent. We regularly run tools to reclaim
disk space by two mechanisms:

1> Delete impermanent (i.e., reproducible data) data.

2> Archive on HPSS and purge older permanent (i.e., raw data) data.
Other uses of /project are modest in comparison. We estimate ~10-20 TB per year.
HPSS permanent archival storage: ALS real-time data analysis and our associated tools
backup any irreproducible scientific data to HPSS before purging from disk. About 5 TB per

month (60 TB/year) of permanent, irreproducible scientific data are archived to HPSS
currently. We expect this to increase drastically in the 2017 time frame (see below).
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We share data between Carver, DTNs, Science Gateway nodes, testbed nodes (such as
Jessup), Hopper, and Dirac.

We use HDF5 libraries and do sequential [/0, one file per job (i.e., no parallel /0). We
anticipate utilizing parallel /0 in our codes during FY 2014.

Real-time analysis throughput is limited by a combination of startup & teardown times and
data I/0. (i.e.,, CPU time is not our limiting factor).

11.2.3.3 Parallelism

The parallelism of the analysis varies significantly from beamline to beamline: tomographic
reconstruction codes use ~100 cores concurrently (split across multiple jobs) while Monte-
Carlo based GI codes (to be deployed in production in the next calendar year) can scale to
10's of thousands of cores. We do run multiple jobs concurrently when a new data set
arrives at NERSC before the completion of the analysis on a previous set. This is
compounded as datasets arrive from multiple beamlines. In general weak scaling (by
increasing the amount of data to be analyzed) is more important to us than strong scaling
(i.e. using more computational cores on a given data set). However, this may vary from
beamline to beamline; in particular, the GISAXS codes are able to strong scale effectively.

11.2.4 HPC Requirements in 2017

11.2.4.1 Computational Hours Needed

As mentioned in 1.3.1, the current allocation is not reflective of the needs of ALS once the
science/data portal is fully deployed. For 2014 ALS is requesting 15,000,000 hours because
we are rolling out the first instance of the portal to one beamline. All of the users on that
beamline will participate in the portal. We anticipate adding two more beamlines to the
portal and to continue to develop analytical codes that take advantage of the HPC
environment at NERSC. The 2014 request is 5,000,000 hours. By 2017, it is likely that ALS
will bring on two more data intensive beamlines, COSMIC (Coherent Scattering and
Diffraction Microscopy) and MAESTRO (Magnetic and Electronic Structure Observatory). In
addition, there will be increased data flows from spectroscopy and photoemission work
that that will be brought into the portal.

Based on these estimates, we anticipate requiring 45,000,000 computational hours.

11.2.4.2 Dataand|/O

1. Scratch (temporary) space: We will be using high-performance scratch for 1/0
intensive processes and for temporary, intermediate data artifacts starting somewhere in
FY2014-FY2015. We predict that we will need access to enough to handle 10-40 datasets in
parallel. This translates into 5-20 TB of scratch.

2. Permanent (can be shared, NERSC Global Filesystem /project): We will be using
~100-400 TB of /project as cache for real-time raw data and derivatives. We would expect

to achieve parallel /0 rates of 10-100 GB/s.

3. HPSS permanent archival storage: We will be adding approximately 1 PB of data to
HPSS per year.
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-1 GB/secl/0 rates

11.2.4.3 Scientific Achievements with 32X Current Resources

Historically, the responsibility of a facility like ALS towards its users often ends when the
users copies their data onto portable storage media. If ALS is to continue to enable cutting
edge photon science, that relationship will need to be extended to include data management
and analysis capabilities. Because the science is heterogeneous, predicting as specific
achievement with more computing resources is difficult. That said, dramatically increased
computing resources will enable more and richer data sets generated at ALS to be analyzed.
As the number of users using the NERSC facilities grows, the simultaneous access to
compute resources will be necessary.

11.2.4.4 Parallelism

By 2017, we expect to be simultaneously processing data from multiple ALS beam-lines in
near real-time. Additionally, we expect concurrent analysis will be performed from users
around the world via the web-portal. The parallelism of the analysis varies significantly
from beamline to beamline from tomographic reconstruction codes that use ~100 cores
concurrently to Monte-Carlo based GISAXS codes that can scale to 100's of thousands of
cores (and have done so on Titan).

11.2.4.5 Memory

Simulation codes will likely have much higher needs that today. Extrapolation at this time is
impossible.

Real-time analysis currently takes ~3GB/core and will likely increase by a factor of x4-x8 by
2017.

11.2.4.6 Many-Core and/or GPU Architectures

The GISAXS codes in particular have been optimized for GPUs and tomographic codes
capable of efficiently utilizing a GPU are in development. We believe GPUs at NERSC,
whether in the form of a rack, midsize cluster or large cluster would benefit the ALS
workload. Porting to other many-core architectures is likely possible (particularly after the
work in identifying areas for on-node parallelism has already been completed during the
GPU porting phase).

11.2.4.7 Software Applications and Tools

The ALS beamline software landscape is largely ad-hoc and relies heavily on a limited
number of experts to handle data and data analysis. The result is that beamline efficiency
and ability to address important scientific questions are diminished. In order to use NERSC,
codes will need to be made ready for the HPC environment. Section 1.2.2 lists some current
codes and their requirements that will be made available to the users via the portal. Part of
the ALS repo allocation includes capacity to modernize other codes to expand the utility of
the portal.

11.2.4.8 HPC Services

ALS will require many of the components of the suite of services offered by NERSC. In
particular, data analytics and visualization, collaboration tools, web interfaces, federated
authentication services, and gateway support will be needed.
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11.2.4.9 Time to Solution and Throughput

Real-time feedback to during ALS beam time is a capability critically needed by many ALS
beamline users, yet unobtainable for very large data sets. Time dependent studies of crack
formation in advanced composite materials under stress, or of dendrite formation leading
to failure of Lithium ion batteries, or of supercritical CO, flow through rock for geologic
carbon sequestration are all examples of time-resolved, in situ experiments at the ALS that
require real-time feedback. Beam time is a precious commodity that may only be available
to a particular user for one relatively short period during a year. Making the most efficient
use of that time requires real-time feedback. Each of these science programs requires beam
time feedback and are currently doing a fraction of the science possible with the ALS facility.
Real-time feedback is also needed to evaluate experimental results in the context of data
simulations before proceeding with a collection of a number of large data sets. While
simulations might be run prior to beam time, the evaluation of data quality must be done in
real-time. This requirement will change the way NERSC interacts with a class of its future
users. Traditionally, execution of jobs is controlled by a queue. That process will not satisfy
the requirements of some ALS users. The solution to this will require collaboration between
ALS, NERSC, and computational staff. This may also drive a policy discussion between ASCR
and BES.

11.2.4.10 Data Intensive Needs

Real-time & On-Demand Queues: To permit time-resolved, in-situ experiments and to
provide beam-time feedback to scientists as they conduct experiments, we need access to
CPU resources that can be reliably marshaled on demand. Techniques like message queues
or dynamic resource allocation will need to be developed and integrated with our workflow
systems.

High Throughput Queues: HTC resources for large data will be required to handle high
Velocity data streams from beamlines like COSMIC at the ALS.

Science Servers & Services: Experiment/Facility-specific services running on either
dedicated or shared servers (not interactive nodes, nor batch nodes with time or CPU
limits), will be necessary for real-time analysis orchestration, data management processes,
and user interfaces and/or data sharing. Science Data Gateways are anticipated to be a
continued service provided.

GPUs & Special Architectures: Several simulation and analysis codes being currently
developed run exceptionally well on GPUs. Understanding how these special-purpose
and/or customized architectures could be integrated with NERSC CPU, disk, and tape
resources will be an important component of our research over the next 5 years.

11.2.4.11 What Else?

Looming data policy requirements are likely to include access to facility generated data by a
class of user not involved with generation of the data. Such a user may not even be a
collaborator of the data-generating user. A user of this sort has been referred to as a Data
User. This form of “public access” to data generated at a federally supported facility is best
facilitated by a professionally managed facility like NERSC. In 2017 and beyond, it is
possible that all data from ALS will need to be archived at NERSC. This will put added
demand on NERSC services such as consulting or account support, data analytics and
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visualization, training, collaboration tools, web interfaces, federated authentication
services, gateways, etc. To date, there is no mechanism to support Data Users.

11.2.4.12 Requirements Summary

Used at NERSC Needed at NERSC

in 2013 in 2017
Computational Hours (Hopper core-
hour equivalent) 43 M 45 M

0TB 10 TB

Scratch storage and bandwidth

0 GB/sec 10 GB/sec
Shared global storage and bandwidth 75TH 200TB
(/project) 1 GB/sec 10 GB/sec
Archival storage and bandwidth 536 TB 5,000 TH
(HPSS) 1 GB/sec 4 GB/sec
Number of conventional cores used 50-50,000 50-200,000
for production runs
Memory per node 3GB 12 GB
Aggregate memory (NA) TB (NA) TB
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11.3 Advanced Modeling for Next-Generation BES Accelerators

Principal Investigator: Robert D. Ryne (Lawrence Berkeley National Laboratory)
NERSC Repository: m669

11.3.1 Project Description

11.3.1.1 Overview and Context

Particle accelerators are among the most versatile and important tools of scientific
discovery. The Nation's accelerators are responsible for a wealth of advances in materials
science, chemistry, the biosciences, particle physics, and nuclear physics. They also have
important applications to the environment, energy, and national security, and are highly
beneficial to the US economy by helping to maintain leadership in science and technology.
Accelerators also have a direct impact on the quality of people's lives through medical
applications including radioisotope production, pharmaceutical drug design and discovery,
and through the thousands of accelerator-based irradiation therapy procedures that occur
daily at U.S. hospitals.

The success of the Linac Coherent Light Source (LCLS) at SLAC marks the beginning of a
new era in accelerator science, the era of “4th generation” light sources based on x-ray free
electron lasers (XFELs). These facilities enable the exploration of systems with
unprecedented temporal resolution, allowing ultra-fast biochemical processes to be
observed and explored for the first time. The extraordinary opportunities presented by 4th
generation light sources have led to their planned development worldwide. R&D is already
underway for the design and development of new, novel approaches to “seed” the FEL to
reduce size and cost, and to provide greater control of the radiation production.

Large-scale computational modeling is essential for the design of future light sources. These
devices involve the interaction of particle beams, synchrotron radiation, and lasers, over a
very wide range of spatial and temporal scales. The physical phenomena that are modeled
involve 3D nonlinear dynamics in applied electromagnetic fields and nonlinear collective
interactions. Researchers are now able to model some collective effects with a “real-world”
number of simulation particles — 6.24 billion particles in a 1 nanoCoulomb bunch. It has
been demonstrated in simulations that these single particle effects are important and need
to be included in the design process to reliably predict light source performance.

While parallel simulation codes have proven very successful for existing light sources like
LCLS, there remain important and challenging computational issues for the exploration,
development, and optimization of future concepts. Examples include:

* Coherent synchrotron radiation (CSR): CSR is among the most important beam
physics issues driving the design of future X-ray FELs, but it remains a major
simulation challenge. Parallel beam dynamics codes, even those with 3D space-
charge effects, often use simplified models of CSR, frequently a 1D model. The
success of the LCLS has shown that collective effects such as CSR and space charge
are adequately modeled in certain regimes. However, there remain some
unexplained discrepancies between experiment and simulation, and large-scale
simulation with more realistic models is important for understanding these
discrepancies. Furthermore, some future light source concepts involve new regimes
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of shorter bunches and lower emittances for which simplified models (like the 1D
CSR model) have not been validated.

* Seeding: The study of innovative schemes to seed the FEL (which could dramatically
reduce overall facility cost) requires high fidelity modeling at submicron
wavelength and with 3D effects included, a capability currently not possible with
existing codes. BES and other agencies are supporting advanced modeling R&D to
address this situation.

* Parallel Design Optimization: Until recently, it was possible to perform parallel
simulations to evaluate accelerator designs, but it was difficult to use large-scale
simulation as a design tool. R&D efforts are now underway to develop and
implement parallel design optimization capabilities. The tools include single- and
multi-objective optimization, and allow a range of optimization approaches
including, e.g., differential evolutionary algorithms.

Parallel 3D multi-physics modeling, including an accurate model of CSR, combined with
parallel optimization capability, will provide an invaluable tool to meet the challenges of
future light source concepts. Given the importance of light sources, and their potential
billion-dollar cost, large-scale modeling is crucial for design optimization, cost and risk
reduction, and the exploration of innovative ideas for which it would be too difficult or too
expensive to perform physical experiments to test new design concepts.

11.3.1.2 Scientific Objectives for 2017

As will be described below, parallel beam dynamics simulation including 3D space-charge
effects has come into widespread use throughout the accelerator community. In contrast, up
to now there has been essentially no usable code for modeling 3D radiative effects. Codes
such as IMPACT and Elegant use a 1D CSR model. But 3D effects are known to be important
in certain situations, and they are likely to become more important through the increased
reliance on complex beam manipulation systems that mix that transverse and longitudinal
beam phase space distributions. The only code with 3D CSR capability, the CSRtrack code
developed in Europe, runs very slowly in 3D mode and the capability is rarely used.
Radiative phenomena like CSR are arguably among the most challenging phenomena to
simulate in beam dynamics codes. Compared to the advances in modeling space-charge
effects, modeling radiative phenomena lags far behind. But that is about to change. One of
our main goals is to remedy this situation so that radiative phenomena can be modeled with
the required realism and resolution needed to design the next generation of light sources.

Our objectives are: (1) To develop a parallel, scalable capability for including radiative
effects such as CSR in accelerator design codes; (2) to develop and implement methods for
efficient modeling of collective phenomena with wide-ranging and very high resolution
(from 10's of microns down to sub-nanometer scale); (3) to develop methods for modeling
shot-noise effects, (4) to embed our light source modeling capabilities in a parallel design
optimization framework; (5) to apply these capabilities to design and optimize BES light
sources and explore and develop advanced concepts, and (6) to distribute and deploy these
advanced modeling capabilities to the BES light source design community.
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11.3.2 Computational Strategies (now and in 2017)

11.3.2.1 Approach

Thanks to advances in mathematical models for treating radiative phenomena, parallel
optimization algorithms, and the availability of the latest HPC resources, we are on the
verge of new era in advanced simulation of light sources.

Parallel simulation of beam dynamics in particle accelerators began in earnest in the mid-
1990s. Prior to that time, the accelerator community had made great progress in developing
methods and serial codes for modeling single-particle nonlinear dynamics (e.g. the
development of Lie algebraic mappings, symplectic integrators, etc.) and for modeling 2D
space-charge effects. With the advent of parallel computing, space-charge effects could be
usefully modeled in 3D for the first time, and these effects were combined with high-order
beam optics effects using techniques such as split-operator methods. Throughout the
2000's and up to the present time, the trend in beam dynamics codes has been toward
increasingly large scale, multi-physics modeling. Parallel beam dynamics codes now
contain, and are routinely used to model, a variety of phenomena including high-order
optics, 3D space-charge, beam-beam effects, structure wakefields, 1-D CSR, electron-cloud
effects, and beam-material interactions. As an example of how far we have come, consider
that in 2013 the IMPACT-T and IMPACT-Z parallel PIC codes were combined with the
GENESIS FEL code to produce a single parallel executable, and were used for the first start-
to-end simulation of a future light source simulated with a real-world number of electrons
(2 billion in this example). The simulation took 14 hours on 2,048 cores of Hopper, and
included 3D space-charge effects, structure wakefield effects, and 1D CSR effects.
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Figure 1: Schematic of a future light source (left), and results from a start-to-end
simulation showing the final longitudinal phase space distribution. The simulation used a "real
world" number of electrons (2 billion) and included 3D space-charge effects, structure wakefields,
and 1D coherent synchrotron radiation (CSR) effects. This parallel simulation was performed on
Hopper at NERSC, and required 10 hours on 2048 cores. By embedding this capability in a parallel
optimizer and scaling to of order 100k cores, it is now possible to perform start-to-end global
optimization using this model. The next major step in code development for future light sources
involves developing techniques for high-resolution, 3D modeling of radiative effects such as CSR.
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Despite the major advances in parallel multi-physics beam dynamics modeling, the
simulation of radiative phenomena has remained a major challenge and has lagged far
behind the treatment of 3D space-charge effects. Radiative phenomena are critical to future
light sources. Examples include coherent synchrotron radiation (CSR), incoherent
synchrotron radiation (ISR), and undulator radiation. A first-principles classical treatment
usually involves the Lienard-Wiechert formalism. Since this involves quantities when the
radiation was emitted (i.e. at retarded times and locations), it requires storing a history of
each particle's trajectory. Also, CSR phenomena can exhibit large fluctuations that are
physical, not numerical, hence it is often necessary to use as close to a real-world number of
particles as possible. The calculation of retarded quantities is iterative and extremely time
consuming. Consider that the calculation of an electric field component on a grid in an
electrostatic code, e.g., x/|r|3, requires only a small number of floating point operations; by
contrast the calculation of the L-W field requires a small simulation code itself. In addition,
to embed such a capability in a self-consistent beam dynamics code greatly compounds the
effort, leading to massive requirements for FLOPs and memory.

Despite these challenges, recent progress indicates that we are on the verge of being able to
model 3D radiative effects using a Lienard-Wiechert approach. This is made possible by
new, convolution-based Lienard-Wiechert solvers. In this approach, the Green function,
which normally depends on both the observation point and the retarded quantities, is
reduced to a function of just one quantity. This in turn makes it possible to solve for the
fields in O(N log N) operations, where N is the number of grid points. An example is shown
in Figure 2, which compares Lienard-Wiechert summation with convolution-based
simulation for two test problems. The results are nearly identical. It is worth emphasizing
that this is not an electrostatic calculation (for which the technique is well established), this
is an electromagnetic calculation involving the retarded Green function. The brute force
summation scales as the square of the number of particles, making it totally unsuitable for
practical use.
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Figure 2: Comparison of two methods -- brute-force Lienard-Wiechert (L-W) summation and L-W
convolution with a retarded Green function -- for two test problems. Left: z-component of the
radiation electric field of a 1 GeV Gaussian bunch inside a dipole magnet. Right: x-component of the
radiation electric field of a 125 MeV modulated Gaussian bunch inside an undulator of a free electron
laser. The two methods are in excellent agreement for both test problems. The narrow blue rectangle
on the right figure shows the domain of the inset, and demonstrates excellent agreement even at the
level of the radiation wavelength (250 nm in this example).
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11.3.2.2 Codes and Algorithms

IMPACT, IMPACTgs: The IMPACT code suite contains 2 parallel particle-in-cell (PIC) codes,
along with auxiliary programs, to simulate high intensity, high brightness beam transport in
particle accelerators, including 3D space-charge effects. It has demonstrated more than
90% efficiency in weak scaling on up to 100,000 processors. IMPACTgs is parallel code
combining IMPACT with the GENESIS FEL code.

CSR3D: This is a new parallel PIC code that has been developed to model both space-charge
effects and radiative effects in charged particle beams in accelerators. It makes use of the
LW3D convolution-based solver, which is a parallel code for computing the Lienard-
Wiechert fields associated with a beam bunch in an accelerator.

11.3.3 HPC Resources Used Today

11.3.3.1 Computational Hours
We used 5.2 M hours in 2013.

11.3.3.2 Parallelism
We typically use 2,000 to 10,000 cores. We have done simulations on up to 100,000 cores.

We expect we could use up to a million cores at this time for problems involving parallel
design optimization. We already have parallel optimizers that use 2-level parallelism, one
level for each "point" simulation in parameter space and a second level for the optimizer.
Scalability of these simulations is dominated by the scalability of the "point" simulations,
which have already been demonstrated up to 10K, but are typically run with 2K cores.
Multiplying this by of order 100 "population members" in a differential evolutionary
optimizer leads to simulations of 200k to 1M cores.

Accelerator design is an activity that normally requires timely interaction with the
accelerator designer. While long wait times are acceptable for occasional "heroic"
simulations, generally speaking wait times of more than a day are unacceptable, and wait
times of hours are highly preferable. We would gladly use 100K processors for our typical
design optimization runs if they would start within a few hours from the time we submit
them.

We do not use high throughput computing.

Whether weak scaling or strong scaling is important depends on what is being simulated.
Strong scaling is more important when we are modeling a single accelerator design. On the
other hand, when we are doing parallel design optimization, weak scaling is important since
it allows us to use more population members in a differential evolutionary optimizer,
thereby leading to a faster time-to-solution. However, since the communication associated
with the optimizers is small, the dominating factor is the strong scalability of the point
simulations.

11.3.3.3 Scratch Data

Scratch is not an issue for us at this time.
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11.3.3.4 Shared Data

We have a project directory called m669. We use it to share data, and we use it like an
extended home directory.

11.3.3.5 Archival Data Storage

We usually store reduced data, so archival storage is not normally an issue for us. If we
stored raw data from all the steps of a simulation, the storage requirement would be as
follows for the following example: 2 billion particles x 9 variables/particle = 144 GB per
step in double precision. Multiplied by 10,000 steps, this corresponds to 14 PB.

11.3.4 HPC Requirements in 2017

11.3.4.1 Computational Hours Needed
We expect to need at least 100M hours in CY2017.

The primary factor is the transition to performing 3D simulations of radiative phenomena
like CSR instead of 1D simulations.

11.3.4.2 Parallelism

The incorporation of convolution-based Lienard-Wiechert solvers in our codes will greatly
increase the FLOPs count in our simulations. This will improve the scalability of our "point"
simulations, which we expect to increase from 2K-10K cores (presently) to 100K cores in
2017. On the other hand, as mentioned above, wait time in queues is an important factor in
accelerator design. Our "typical” use will be to use as many cores as possible while still
having wait times of less than a day.

For parallel design optimization, multiplying 100K cores by 100 population members of a
differential evolutionary algorithm leads to 10M cores.

We will not typically need more than one job running at once. Although our parallel
optimizing runs, which are actually performed in a single job, and can be thought of as
concurrent, loosely coupled jobs.

11.3.4.3 1/0

Our I/0 requirements will vary depending on the type of analysis being performed. In some
cases very little I/0 is required, while in others (such as exploring beam phenomena at high
resolution) I/0 requirements can be a several tens of TB, to as much as a PB if we stored all
particle information from every step. Our parallel I/0 activities and data analysis activities
will build on our already successful collaboration with the ExaHDF5 team.

Storing O(100TB) datasets for future runs will need scaling of /0 hardware resources. We
believe that an aggregate bandwidth of 500GB/s-1TB/s will be required for storing our
datasets on disk. It is worth noting that in-situ visualization and analysis is applicable to a
small fraction of our small use cases, and we will need to store datasets at a high temporal
resolution going forward.

We would like to keep the percentage of total runtime devoted to I/0 as low as possible.
Between 5-10% would be considered reasonable for our work.
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11.3.4.4 Scratch Data

We will require O(100TB) for large runs in the future. To the extent that /scratch systems
will be faster than project, we want to avail of high performance 1/0 going forward.

What is causing the growth in scratch space is the use of higher resolution field data, and
the desire to store a larger number of time steps.

11.3.4.5 Shared Data

Each full particle dump in a 2-billion particle simulation requires 144 GB. We are not likely
to share more than several such dumps. As a result, our present project quota of 4 TB
should be sufficient.

11.3.4.6 Archival Data Storage
We expect to store around 300 TB.

[/0 is parallel and collective (writing to single shared HDF5 file).

11.3.4.7 Memory Required

We can control how much memory per node is used by controlling how many particles each
node handles. But since Lienard-Wiechert codes use stored particle history data, we prefer
to have as much memory as possible. Otherwise our codes become communication-
dominated (i.e. if there are too few particles/node, then there would be too few FLOPs
per/node, and we would be dominated by global operations like parallel FFTs).

11.3.4.8 Emerging Technologies and Programming Models

We are not ready for this now, but it would be advantageous in a Lienard-Wiechert code
since there are many FLOPs associated with the iterative search to find so-called "retarded"
quantities, and very little data movement required.

If it appears that the NERSC system in 2017 will have GPUs, then we would request help
(either directly or through NERSC training classes) to GPU-ize the Lienard-Wiechert kernel.

11.3.4.9 Software Applications and Tools
We need Fortran compilers, serial FFTW, parallel FFTs, HSPART, H5BLOCK, and ExaHDFS5.

11.3.4.10 HPC Services

We use consulting and analytics support and collaborate with the ExaHDF5 team.

11.3.4.11 Time to Solution and Throughput

As mentioned previously, accelerator design usually requires feedback to the designer in a
matter of hours to at most a day. For that reason, we often run short premium jobs hoping
that they will backfill and start quickly. Ideally, we would like to find a way to have several-
hour jobs start running quickly.
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11.3.5 Data Intensive Needs

We greatly value and appreciate NERSC's systems and resources. The one thing that would
help us a lot is to be able to have jobs a few thousand processors, lasting up to, say, 12

hours, start running more quickly.

We do not have a data management plan in place now.

11.3.5.1 Requirements Summary

Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours 52 M 100 M
Typical number of cores* used for production few thousand 20-100K
runs
Maximum number of cores* that can be used > 100K > 1M
for production runs
Data read and written per run 0(100 TB) written
for large runs

Maximum I/0 bandwidth 500 -1000 GB/sec
Percent of runtime for 1/0 5-10%
Scratch File System space 100 TB
Shared filesystem space 0.25 TB 4TB
Archival data 39TB 300 TB
Memory per node 64GB 64 GB or greater

* “Conventional” cores
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Appendix A. Attendee Biographies

Domain Scientists

Michael Banda is the Deputy Division Director for Operations of the Advanced Light
Source. "Banda," as he prefers to be called, manages the overall operation of the ALS,
including accelerator and beamline operations, user activities, safety, and environmental
protection activities. He has been with Berkeley Lab since 1999. He began as the Deputy
Division Director for Life Sciences, and then became the founding Deputy Division Director
for Genomics at the time when the Joint Genome Institute was formed. In 2001, Banda
moved on to become Deputy Division Director for Computing Sciences, where he held
responsibilities with the Computational Research Division and the National Energy
Research Scientific Computing Center (NERSC). His previous work with x-ray science
includes an appointment as Professor of Radiology and Director of the Laboratory of
Radiological Biology at the University of California, San Francisco, a unit that studied the
effects of radiation in applications of biochemistry and cell biology.

Jacqueline Chen is a Distinguished Member of Technical Staff at the Combustion Research
Facility of Sandia National Laboratories and Adjunct Professor of Chemical Engineering
University of Utah, Utah. She received her Ph.D. in Mechanical Engineering from Stanford
(1989) under the direction of Brian Cantwell. She is a world-renowned expert in the use of
petascale direct numerical simulations (DNS) for turbulent combustion, with a focus on
turbulence-chemistry interactions in canonical laboratory-scale flames. Se served as the co-
editor of Proceedings of the Combustion Institute and is a member of the Editorial Advisory
Boards of Combustion and Flame and Computational Science and Discovery.

Jack Deslippe is an HPC Consultant in the NERSC User Services Group where he specializes
in the support of material science applications. He is engaged in evaluating and improving
the suitability of these applications for potential N8 architectures and also works on
bringing dynamic web-content to users through MyNERSC, the MOTD system, Completed
Jobs Pages, ALS Science Gateway Projects and the NERSC mobile site, m.nersc.gov. Jack is a
PI on a SCIDAC project (http://excited-state-scidac.org/) and is one of the lead developers
of the BerkeleyGW package for computing the excited state properties of materials. Jack is
the NERSC PI on the Berkeley Lab Directed Research project that is delivering real-time
data analysis to ALS scientists through ESNET and NERSC resources. He is the developer the
ALS analysis and simulation web-portal at NERSC. He received a Ph.D. from UC Berkeley in
physics in 2011. His research centered on materials physics and nano-science: scaling
many-body Green's function computational methods for the study of the optical properties
of materials with large and complex structures.

Sanket Deshmukh is a postdoctoral researcher with Subramanian Sankaranarayanan in
the Theory and Modeling Group, Center for Nanoscale Materials, at Argonne National
Laboratory.

Andrew R. Felmy is a Laboratory Fellow at Pacific Northwest National Laboratory.

Scott French received his Ph.D. in Earth and Planetary Science at U.C. Berkeley Prof.

Barbara Romanowicz in the Global Seismology Research Group at the Berkeley
Seismological Laboratory. He recently joined NERSC as an HPC consultant.
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Andreas Heyden is Assistant Professor of Chemistry at University of South Carolina. His
research interests are in the areas of nanomaterial science and heterogeneous catalysis. His
goal is to use computer simulations to obtain a deeper - molecular - understanding of key
issues in these areas, such as the self-assembly process in catalyst synthesis, the structure of
small metal clusters on high-surface-area supports, and the structure-performance
relationship of single-site heterogeneous catalysts. He was granted a Ph. D. from Hamburg
University of Technology in 2005.

Paul Kent is a member of the Nanotheory Institute at the Center for Nanophase Materials
Sciences (CNMS) and the Computational Materials Science group in the Computer Science
and Mathematics Division. He spent three years at NREL with Alex Zunger after completing
a Ph.D. with Richard Needs at the University of Cambridge. For several years he worked
with Mark Jarrell at the University of Cincinnati on high-temperature cuprate
superconductors. He has been at Oak Ridge National Laboratory since 2009.

Yun Liu is a postdoctoral researcher in the MIT laboratory of Professor Jeffrey Grossman.

Thomas Miller graduated from Texas A&M University with honors in 2000 as a major in
chemistry and mathematics. He received a British Marshall Scholarship to pursue graduate
study in the U.K. which he used to obtain an M. Phil. from University College London in
2002. He then attended the University of Oxford on an NSF graduate research fellowship,
earning a D. Phil. from Balliol College in 2005. Tom joined the Caltech faculty as an assistant
professor in 2008, and he was promoted to full professor in 2013. While at Caltech, he has
received the Dreyfus New Faculty Award, Sloan Research Fellowship, NSF CAREER Award,
American Chemical Society Hewlett-Packard Outstanding Junior Faculty Award, Associated
Students of Caltech Teaching Award, and the Dreyfus Teacher-Scholar Award.

Jeffrey Neaton was appointed director of the Molecular Foundry at LBNL in 2013. He also
leads the Theory group at the Molecular Foundry. Jeff received his Ph.D. in Physics from Cornell
University in 2000, under the guidance of Neil W. Ashcroft. After a departmental postdoc in the
Department of Physics and Astronomy at Rutgers University, he joined the Molecular Foundry at
Lawrence Berkeley National Laboratory in 2003. His current research interests center on
computational nanoscience, in particular the development and application of methods for
calculating the structural, spectroscopic, and transport properties of inorganic and molecular
nanostructures, particularly at interfaces and contacts. Present areas of interest include the
electronic properties of the metal-organic interface, hybrid silicon-organic interfaces, and single-
molecule junctions; self-assembly; nanoparticle assemblies; photovoltaics; hydrogen storage;
ultrathin epitaxial films of transition metal oxides, such as ferroelectrics and multiferroics; and
structural and electronic phases of light elements under pressure.

Gregory Newman is a Senior Scientist at Lawrence Berkeley National Laboratory, Earth
Science Division and Head of the Geophysics Department in the Earth Sciences Division. Prior to
his appointment in January 2004, Dr. Newman worked nearly fourteen years at Sandia National
Laboratories, Geophysical Technology Department. His interest, include large-scale, multi-
dimensional, inverse and forward modeling problems arising in exploration geophysics, parallel
computation and electromagnetic geophysics. He has over 20 years of experience in large-scale
geophysical field simulation and computation. In 2000, Dr. Newman was a Mercator Fellow at
the Institute for Geophysics and Meteorology, University of Cologne, Federal Republic of
Germany. The fellowship was awarded from the German National Science Foundation for a year
of study in the Federal Republic of Germany. Studies at the Institute were directed on the

Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2017 140



formulation and implementation of 3D transient electromagnetic modeling and inversion
algorithms for geophysical applications and lectures on the electromagnetic modeling and
inversion. Dr. Newman was also affiliated with this institution from 1987-1989 as a Post
Doctorate Appointee and an Alexander von Humboldt Fellow.

David Skinner is the Strategic Partnerships Lead at NERSC. Skinner holds a Ph.D. in
theoretical chemistry from the University of California, Berkeley. His research focused on
quantum and semi-classical approaches to chemical reaction dynamics and kinetics. He
began working at NERSC/Berkeley Lab in 1999 as an HPC engineer and spent the last eight
years leading the OSP group. During his 15-year career at NERSC, Skinner was the lead
technical advisor to first two rounds of INCITE projects, led the SciDAC Outreach Center,
and is an author of the Integrated Performance Monitoring (IPM) framework. He also
published several papers on the performance analysis of HPC science applications and
broadening the impact of HPC through Science Gateways.

Carl Steefel has over 21 years of experience in developing models for multicomponent
reactive transport in porous media and applying them to topics in reactive contaminant
transport and water-rock interaction. The reactive transport software CrunchFlow, for
which he is the principal developer, is the culmination of this work. He investigated
geochemical self-organization and complexity theory in water-rock interaction, while also
developing the first routine for multicomponent nucleation and crystal size distributions in
the Earth Sciences. Soon after, he presented the first multicomponent, multi-dimensional
code for simulating water-rock interaction in non-isothermal environments. Steefel applies
reactive transport modeling to such diverse settings as hydrothermal, contaminant,
chemical weathering, and marine environments. He holds a Ph.D. in Geochemistry from
Yale University and has been at LBNL since 1998.

Sotiris Xantheas Dr. Sotiris Xantheas is known in the chemical physics scientific
community for his research in intermolecular interactions in aqueous ionic clusters and the
use of ab-initio electronic structure calculations to elucidate their structural and spectral
features. His research has ranged from the computation of potential energy surfaces for
various chemical reactions using correlated wavefunctions to the elucidation of reaction
paths governing carbene ring opening processes and the location and characterization of
intersections of potential energy surfaces of the same symmetry in polyatomic systems. He
has recently utilized the results of high-level electronic structure calculations to
parameterize a family of ab-initio based interaction potentials for water and used those
potentials to simulate the macroscopic properties of liquid water and ice.

NERSC Editors

Richard Gerber is NERSC Senior Science Advisor and User Services Group Lead. Together,
with Harvey Wasserman he organizes the NERSC High Performance Computing and Storage
Requirements Reviews for Science and edits the reports. He holds a Ph.D. in physics from
the University of Illinois at Urbana-Champaign, specializing in computational astrophysics;
held a National Research Council postdoctoral fellowship at NASA-Ames Research Center
1993-1996; and has been on staff at NERSC since.

Harvey Wasserman is a member of the NERSC User Services Group and helps to organize
the NERSC High Performance Computing and Storage Requirements Reviews.
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Appendix B. Meeting Agenda

Tuesday, October 8
8:00 AM Informal discussions
Dave Goodwin, ASCR (NERSC
8:30 AM Welcome, Overview of Requirements Reviews Program Manager); Richard

Gerber (NERSC)

8:45 AM Computing in Basic Energy Sciences

James Davenport, BES

9:15 AM NERSC's 10-Year Plan

Sudip Dosanjh, NERSC
Director

9:45 AM AM Break

Geosciences Case Studies

10:00 AM Large Scale 3D Geophysical Inversion & Imaging

Gregory Newman, LBNL

10:20 AM Computational Studies in Molecular Geochemistry

Andy Felmy, PNNL

Direct Numerical Simulation of the Poisson-Nernst-Planck

10:50 AM L. Carl Steefel, LBNL
Equation in Clay

11:20 AM Global-scale full-waveform seismic imaging of Earth’s Scott French, UC Berkeley
mantle
Materials Science Case Studies

11:40 AM Computational Resources for the Nanomaterials Theory Paul Kent, ORNL

Institute at the Center for Nanophase Materials Sciences

12:10 PM Group Photo

Working Lunch Presentation. "Transitioning to NERSC-8

12:30 PM and Beyond: The NERSC Application Readiness Effort"

Jack Deslippe, NERSC

Materials Science Case Studies (continued)

1:00 PM The Materials Project

David Skinner, NERSC

1:30 PM Large-Scale Computation for Excited State Phenomena

Jeff Neaton, LBNL

2:00 PM Computational Design of Novel Energy Materials

Yun Liu, MIT

2:30 PM PM Break

Scientific User Facility Case Studies

2:45 PM Advanced Modeling for Next-Generation BES Accelerators

Robert Ryne, LBNL

3:00 PM Advanced Light Source

Jack Deslippe, NERSC

Combustion Case Studies

Direct Numerical Simulations of Clean and Efficient

3:30PM 1 - mbustion with Alternative Fuels

Jackie Chen, Sandia National
Laboratories

Chemical Sciences Case Studies

4:00 PM Rational Catalyst Design for Energy Production

Andreas Heyden, Univ. South
Carolina

4:30 PM Group Discussions

All participants

5:30 PM Cross-Cutting Issues in Data Storage, Transfer, and Analysis

David  Skinner and all
Participants

6:00 PM Adjourn for the day
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Wednesday, October 9

8:00 AM Informal Discussion
Chemical Sciences Case Studies (Cont'd)
8:30 AM Chemical reactivity, sqlvatlon and _ multicomponent Sotiris Xantheas, PNNL
heterogeneous processes in aqueous environments
9:00 AM Moleculz.lr Dyn_amlcs of PNIPAM Agglomerates and Sanket Deshmukh, ANL
Composite Architectures
. Sampling Diffusive Dynamics on Long Timescales, and .
9:30 AM Simulating the Coupled Dynamics of Electrons and Nuclei Tom Miller, Caltech
10:00 AM AM Break
10:15 AM High-Level Findings Report All Participants
11:00 AM Schedule for Report Richard ~Gerber & Harvey
Wasserman
11:15 AM Case Study Report Refinement and Discussions All Participants
12:00 PM Working Lunch: Case Study Breakout Sessions All Participants
1:00 PM Adjourn
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Appendix C. Abbreviations and Acronyms

ALCC
ALCF
ALS
AMR
API
ASCR
AY
BER
CG
CSR
CUDA
DFT
DNS
DTN
EMSL
ESG
ESnet
FEL
FEM
FFT
GA
GI
GPGPU
GPU
HDF
HPC
HPSS
I/0
IDL
INCITE
LBNL
LCLS
MD
MKL
MP
MPI
NERSC
NetCDF
NGF
NISE
NREL
OLCF
ORNL
0S
PDE
PDSF
PES

ASCR Leadership Computing Challenge

Argonne Leadership Computing Facility
Advanced Light Source

Adaptive Mesh Refinement

Application Programming Interface

Advanced Scientific Computing Research, DOE Office of
Allocation Year

Biological and Environmental Research, DOE Office of
Conjugate Gradient

Coherent synchrotron radiation

Compute Unified Device Architecture

Density Functional Theory

Direct Numerical Simulation
(NERSC) Data Transfer Node

Environmental Molecular Sciences Laboratory at PNNL
Earth System Grid

DOE's Energy Sciences Network

Free Electron Laser

Finite Element Modeling

Fast Fourier Transform

Global Arrays

Grazing-Incidence

General Purpose Graphical Processing Unit

Graphical Processing Unit

Hierarchical Data Format

High-Performance Computing

High Performance Storage System

input output

Interactive Data Language visualization software
Innovative and Novel Computational Impact on Theory and Experiment
Lawrence Berkeley National Laboratory

Linac Coherent Light Source

Molecular Dynamics

(Intel) Math Kernel Library

Massively Parallel

Message Passing Interface

National Energy Research Scientific Computing Center
Network Common Data Format

NERSC Global Filesystem

NERSC Initiative for Science Exploration

DOE National Renewable Energy Laboratory

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

operating system

Partial Differential Equation

NERSC’s Parallel Distributed Systems Facility
Potential Energy Surface
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PNNL
QM
QMC
sC
SciDAC
SLAC
SNL
SPH
STF
TDDFT
VASP
XFEL
XSEDE

Pacific Northwest National Laboratory

Quantum Mechanics

Quantum Monte Carlo

DOE's Office of Science

Scientific Discovery through Advanced Computing
SLAC National Accelerator Laboratory

Sandia National Laboratories

Smoothed Particle Hydrodynamics

Solar Thermal Fuels

Time-dependent density functional theory

Vienna Ab initio Simulation Package

X-ray Free Electron Laser

Extreme Science and Engineering Discovery Environment
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Appendix D. About the Cover

Image showing a portion of NERSC’s “Hopper” system, a Cray XE6 installed
during 2010. Hopper is NERSC's first peta-FLOP resource, with a peak
performance of 1.28 PetaFLOPs/sec, 153,216 compute cores, 212 Terabytes of
memory, and 2 Petabytes of disk. Hopper placed number five on the November
2010 Top500 Supercomputer list.

Results from a simulation of a 1 nanometer-wide indium nitride wire showing
electron density distribution around a positively charged “hole.” Strong quantum
confinement in these small nanostructures enables efficient light emission at
visible wavelengths, researchers found. (Simulation and analysis by Dylan Bayerl
and Emmanouil Kioupakis, University of Michigan. Visualization created by
Burlen Loring, Lawrence Berkeley National Laboratory, using ParaView. See
"Visible-Wavelength Polarized-Light Emission with Small-Diameter InN
Nanowires," American Chemical Society Nano Lett., 2014, 14 (7), pp 3709-3714)

Montage depicting research activities within the DOE Office of Basic Energy
Sciences at NERSC. Image credits, from top, left: Structure of Mullite, from the
cover of the Journal of the American Ceramic Society, image created by Prof.
Wai-Yim Ching of U. Missouri KC; 3D visualization of water molecules (red and
white) and sodium and chlorine ions (green and purple) in saltwater, on the
right, encountering a sheet of graphene (pale blue, center) from a simulation
related to water desalination. Graphic: David Cohen-Tanugi, MIT; visualization
showing a ribosome (red-blue) in complex with a translocon channel (green) that is embedded in a
cell membrane (yellow, white), Image credit: Bin Zhang and Thomas Miller, Caltech 2012; turbulent
mixing and reaction chemistry in the DNS simulation of planar jet flame, image courtesy of Evatt R.
Hawkes, Ramanan Sankaran, James C. Sutherland, Jacqueline H. Chen; Image showing results of a
first-principles electronic structure and transport study of the junction between a carbon
nanotube and graphene, a type of junction that may turn out to be useful for transistors,
from the cover of the Applied Physics Letters, work done by Brandon G. Cook, William R.
French, and Kalman Varga, Vanderbuilt U.; model of a zeolite molecule investigated using a
waste recycling Monte Carlo simulation to evaluate thermodynamics and kinetics
associated with molecular absorption and motion through the molecule, image courtesy of
Jihan Kim, Jocelyn M. Rodgers, Manuel Athénes, and Berend Smit, Journal Chemical Theory
and Computation; Image representing the result of a 3D numerical seismic and
electromagnetic wave propagation and diffusion simulation superimposed on a portion of
NERSC’s Cray XT4 supercomputer; image courtesy of LBNL Earth Sciences Division,
http://esd.lbl.gov/departments/geophysics/core_capabilities/computational_geophysics.ht
ml
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